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 ABSTRACT 

Wind turbine foundations transfer dynamic and highly eccentric loads to variable soils. The 

design of such foundations involves the verification of multiple limit states to ensure proper 

operation of the turbine and avoid catastrophic failures. An optimal foundation design minimizes 

cost while meeting all relevant limit states at quantifiable and acceptable risks. This dissertation 

explores three common limit states that are relevant to the design of shallow, gravity based, wind 

turbine foundations using a fully-probabilistic Monte Carlo Simulation (MCS) method, termed in 

this work as the direct Reliability Based Design (d-RBD) method. The three limit states are 

foundation tilt, rotational stiffness and bearing capacity. For each of these limit states, design 

variables are randomized using predefined probability density functions. The d-RBD method 

involves running Monte Carlo Simulations to produce realizations covering potential combinations 

of design decision variables such as foundation dimensions (e.g. width and/or depth). The d-RBD 

method uses Bayesian conditional probability theory to select the geometry combinations that meet 

the predefined target probability of failure. With this approach, a single MCS run is needed to 

identify pools of acceptable designs for each limit state from which an optimal design meeting all 

limit states can be selected. 

This dissertation introduces d-RBD as a direct, fully probabilistic design procedure that 

offers important advantages over global factor (ASD/WSD) or partial factor (LSD/LRFD) design 

methods. For each of the limit states under consideration, d-RBD is used to highlight the cost of 

uncertainty, rank the design variables by their importance and assess the effects of pertinent 

variability assumptions. The findings from this work are relevant to ongoing efforts to develop 

international and U.S. standards for the design of wind turbine support structures and their 

foundations.  
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CHAPTER 1 

INTRODUCTION 

A wind energy converter (WEC) consists of moving machinery that exerts large, dynamic 

and highly variable loads on the support structure and its foundation. Wind energy industry 

maturity and progress towards competitiveness with traditional electricity sources was made 

possible through increases in wind turbine size, sophistication of controls and efficiency in power 

extraction from wind. Design of wind turbine towers and their foundations evolved from classical 

procedures developed for traditional buildings to scattered design guidelines that attempt to 

address the load and response characteristics specific to wind turbine support structures. This 

chapter highlights the remarkable growth of the wind energy industry and describes the associated 

developments in wind turbine generator support structures and their foundations, as well as the 

status of design practices. This chapter also presents the problem statement and the objectives of 

this dissertation.  

1.1 Evolution of the Wind Energy Industry 

Electrical power generation through wind energy conversion has grown steadily over the 

past two decades. Installed utility-scale capacity evolved from negligible figures in 2000 to 89 GW 

in the U.S. and 540 GW globally, as shown in Figure 1.1 (AWEA, 2017; GWEC, 2017).  Over the 

past ten years, cumulative installed capacity experienced a fivefold increase in the United States, 

going from 16.7 GW in 2007 to 89 GW at the end of 2017 (AWEA, 2017). Globally, as well as 

domestically, cumulative installed capacity has more than doubled every five years from 2007 to 

2017 and is forecast to maintain this pace for at least the next five years, i.e. to 2022 (GWEC, 

2017). However, as can be seen from Figure 1.1, the rate of growth of electrical wind power 

generation in the U.S. has not kept up with global growth. U. S. share of cumulative global capacity 
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has been on the decline since 2012 and currently stands at about 17%, Figure 1.1. As of 2017, the 

leading five countries in terms of cumulative installed capacity are China, the United States, 

Germany, India and Spain with China being the fastest growth market and accounting for 35% of 

cumulative global capacity and 37% of global yearly added capacity (GWEC, 2017). 

 

Figure 1.1 Cumulative capacity growth (AWEA, 2017; GWEC, 2017) 

 

The U.S. growth has also been erratic as clearly reflected in the added yearly capacity graph 

shown in Figure 1.2 (AWEA, 2017). These fluctuations are attributed to uncertain U.S. fiscal 

policy. The fiscal uncertainty stems primarily from the Production Tax Credit (PTC), a federal 

production-tied tax incentives program that is put through government extension approval every 

year. The erratic fluctuations in new capacity carried negative repercussions for the supply chain 

and the whole industry. In 2015, the U.S. government agreed to a gradual phase out the PTC over 

a period of five years. The phase out, scheduled to be completed by 2019, offered a stable and 
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predictable environment that was beneficial to the industry even with declining incentives. After 

the U.S. wind industry slowdown in 2013 and 2014 and most probably due to the new stable 

environment, new U.S. installations picked up at a consistent rate of about 8 GW added each year 

as shown in Figure 1.2. Globally, over 50 GW of capacity was added each year, with China 

accounting for about half of new global installations. By the end of 2017, global installed capacity 

stood at about 540 GW and is projected to reach 840 GW by 2022 (GWEC, 2017).  

  

 

Figure 1.2 Annual added capacity in the U.S. (AWEA, 2017) 

 

In terms of energy mix, renewables are taking up increasingly larger shares of new 

electrical power generation capacity. The share of renewables varies for different countries. For 

the U.S., and as of 2016, electricity production from wind accounted for 41% of all new generation. 

Globally, wind energy accounted for 51% of new generation and the cumulative installed capacity 
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represented a global wind penetration of about 3.7%. Wind penetration is the fraction of energy 

produced from wind compared to total generation, expressed as a percentage. The wind technology 

roadmap developed by the International Energy Agency anticipates a global wind penetration of 

15 to 18% by 2050 (IEA, 2013). In the United States, wind penetration was estimated at 4.5% in 

2013, 5.5% in 2016 and 6.3% in 2017 (Wiser & Bolinger, 2014; AWEA, 2017). A 2008 study by 

the U.S. Department of Energy indicated that the rate of penetration could reach 20% by 2030 

(DOE, 2008). This study was updated in 2015 as a “wind vision roadmap” to consider various 

market scenarios and sensitivities and was further updated in 2017 (DOE, 2015; DeMeo, 2017; 

DOE, 2017). The updated reports and studies indicate that the projected penetration rates shown 

in Figure 1.3 are possible. The factors driving this growth include increased electricity demand, 

declining wind energy costs, retiring power generation plants and increasing fuel costs. All these 

factors point to wind energy becoming increasingly competitive and supplying a more substantial 

portion of U.S. electricity needs. 

1.2 Evolution of Wind Turbine Technology 

The remarkable growth of global installed capacity was driven by the ever-increasing 

demand for electricity. This growth has been maintained through wind turbine technological 

advances, siting improvements and capital cost reductions. Turbines feature larger rotor diameters, 

higher hub heights, improved energy extraction efficiency and more sophisticated controls. 

Technological advances resulted in turbines that had rated capacities eight times greater than those 

for typical turbines in the nineties and produced seventeen times more energy (AWEA, 2013). 
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Figure 1.3 Actual and projected U.S. wind penetration 

 

Additionally, capacity factors, i.e. the ratios of average power produced by a turbine to its 

maximum rated power, increased from less than 30% to over 40%. In 2013, the average wind 

turbine had a hub height of 80 meters and a rotor diameter of 97 meters. In that year, the industry 

experienced a significant shift towards higher hub heights and especially larger rotors. Tubular 

steel towers for multi-megawatt machines continue to dominate but there is ongoing development 

of concrete towers and increasing adoption of concrete for even higher hub heights (Kaldellis & 

Zafirakis, 2011). Common hub heights for contemporary steel tube towers range from 80 to 115 

meters with rotor diameter typically between 100 and 140 meters.  As shown in Figure 1.4 for the 

“average” tubular steel wind turbine, increases in rotor diameter outpaced hub height increases. A 

larger rotor diameter translates into greater swept area and more extracted energy. However, 

transportation limitations for the steel tube create an upper bound on the section diameter. This 

limitation on tube diameter limits the tower height because slender steel towers would be too 
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flexible. Slender steel tube towers would also cause bearing limits of grout and concrete to be 

reached. It is generally accepted that concrete towers are likely more attractive economically for 

hub heights greater than 120 meters (Engström et al., 2010; ACI, 2016). With increased turbine 

size, support structures needed to adapt to keep up with larger loads and address transportation 

challenges. In general, a larger wind turbine size translates into larger loads for the support 

structures and foundations, although more sophisticated controls have helped stem the load 

increases and hold significant promise for further reductions (Bossanyi, 2003; Selvam, 2007; Njiri 

& Soffker, 2016; Vali et al., 2016; Menezes et al., 2018). 

 

 

Figure 1.4 Size of the "average" tubular steel tower 

 

Cost-wise, Installed Capital Cost (ICC) per kilowatt for onshore wind decreased by more 

than two thirds from the early eighties to around 2004 while Levelized Cost of Energy (LCOE), 
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i.e., the net present value of the unit-cost of electricity over the lifetime of the generating asset, 

decreased by an approximate factor of three (Lantz et al., 2012). However, from around 2004 to 

2009, LCOE experienced a slight increase with China being the only exception due mostly to the 

emergence of several strong domestic original equipment manufacturers. The overall decreasing 

cost trend is expected to continue globally with the most recent estimates putting the LCOE decline 

between 20 and 30% over the next two decades (Lantz et al., 2012). This estimate is in line with 

the wind technology roadmap developed by the International Energy Agency which projects a 

25% LCOE decline of land-based installations (IEA, 2013). 

1.3 Evolution of Wind Turbine Foundations 

The selection of a foundation system for a wind turbine support structure depends on the 

loads and the geotechnical conditions at the turbine location. With bigger turbines and larger loads, 

foundation systems had to evolve to address the challenges specific to dynamic and eccentric wind 

turbine loads while containing costs. Possible foundation systems include shallow gravity-based 

foundations, deep foundations, and proprietary systems. Some geotechnical conditions might 

require specific foundation systems, such as rock anchored foundations at sites with competent 

shallow bedrock or extensive ground modification where the site has very poor/soft soils. In the 

latter case, a shallow gravity-based foundation would typically be placed on ground that has been 

improved. In general, the gravity-based foundation is very common. This foundation is a shallow 

concrete slab that relies on gravity to resist overturning. Gravity forces are the foundation self-

weight, the weight of soil overburden over the foundation and the self-weight of the turbine and 

the support structure. To reduce the volume of foundation concrete, the slab is typically tapered 

from the center towards the edges. The foundation plane geometry has also gone through 

evolutions within the industry, progressing from square, to octagonal or hexagonal to circular 
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shapes as shown in Figure 1.5. As an illustrative example, for a foundation with a width of 

20B m , and with all other dimensions kept unchanged, the total volume of concrete can be 

reduced from 1271m3 for a non-tapered square foundation to 445m3 for the optimal tapered circular 

foundation (Figure 1.5). Nowadays, the tapered octagon geometry is common in the industry with 

the optimal circular shape becoming increasingly popular. Typical foundation widths (or 

diameters) for contemporary turbines range from 15 to 25 meters and the foundation concrete 

volume typically ranges from 250 to over 550 m3. The foundation would normally bear on a 

competent native stratum or structural fill at depths greater than the depth of frost penetration but 

not less than 2 to 3.5 meters. Reliability based design of this shallow foundation system is the 

focus of this dissertation. 

 

Figure 1.5 Gravity based foundation geometries and associated concrete volumes 

 

The typical breakdown of the Installed Capital Cost (ICC) for land-based wind energy 

assigns the lion’s share to the turbine (drivetrain, rotor and tower) with the foundation being a 
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distant third or fourth cost item. For instance, in 2011, the turbine accounted for about 68% of the 

ICC while the foundation accounted for about 4% for a “representative” 1.5MW land-based 

turbine in the U.S. “heartland”, (Tegen et al., 2011). In 2017, the cost share of a land-based turbine 

foundation is estimated at 3.5% while the cost of foundation and substructure for an offshore 

turbine is estimated at 14.7% of ICC (Mone et al., 2017). In Europe, and according to the European 

Wind Energy Association, foundation cost is about 6.5% of ICC for onshore projects and 34% for 

offshore installations (Horgan, 2013). As would be expected, the foundation share of ICC is much 

higher for offshore installations. Whether for land-based or offshore installations, the foundation 

share of the ICC is considerable.  It is obvious that optimization of the foundation design and 

construction methods can have a significant contribution to the competitiveness of wind energy, 

particularly for offshore wind. Reducing the foundation cost share shall be achieved while ensuring 

design reliability level is maintained. Reducing foundation cost share and ensuring design 

reliability are conflicting objectives. Reliability-based design can be a rational framework for 

optimizing engineering designs while ensuring that the target reliability is met. 

1.4 Design Practices within the Wind Energy Industry 

Wind energy converters are type-certified per accepted industry standards (IEC, 2008). 

This means that a turbine design is selected or verified for a range of site conditions grouped under 

a “site class.” This approach means that a turbine at a given location is not designed for the exact 

external environmental conditions at that specific site but is adequate for a range of conditions 

including the conditions at that site. The direct consequence of this approach is that most turbines 

already have some “hidden” safety because the external environmental conditions at locations 

where turbines are placed are within a site class but very rarely at the upper bound of that class. 
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Compared to the rapid growth of the wind energy industry and the associated fast-paced 

research and development, civil engineering design standards appropriate for these structures have 

been lagging. Investors, owners and developers rely on certification agencies to reduce risks 

through type certification of WTG’s. Certification agencies have served the industry well by 

publishing standards and design guidelines, (DNV/Riso, 2002; GL, 2003; DNV/Risø, 2004; DNV-

GL, 2016b). While type certification of wind energy converters to IEC specifications resulted in 

global acceptance of  the “IEC61400-1 Wind turbines - Part 1: Design Requirements” loads 

standard (IEC, 2008), there are considerable differences in structural and geotechnical design 

practices in different parts of the world. Frequently, differences between North American, 

European, Japanese and Chinese practices are natural extensions of differences in structural and 

material design codes in these markets. On the loads side, current design practice relies on load 

cases and partial load factors prepared per IEC61400-1. This standard defines external condition 

classes, design load cases and associated partial load factors for designing wind turbine support 

structures. However, this standard reverts to national design codes for material resistance factors 

with the understanding that a “coherent set of standards” for materials, design and construction is 

used. The IEC61400-1 standard specifies that when partial safety factors for material resistance 

are based on national codes, the resulting safety level should be greater than that intended or 

implied by the IEC standard. Furthermore, since the division and factorization of partial safety 

factors for loads and materials adopted by the IEC are consistent with the methodology defined in 

ISO 2394 (ISO, 2015), the IEC standard cautions that adjustments may be necessary if the 

factorizations or formulations adopted in the national standard are different. This IEC guidance is 

insufficient and such requirements are difficult to appreciate by design engineers. Clearer guidance 

is necessary especially for designers entering the industry from traditional geotechnical and 
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structural engineering practice. Consequently, design reliability varies depending on the national 

standard, the choice of material resistance factors and the designer’s interpretation of a “coherent 

set of standards.” Designs, even those produced by experienced practitioners within the industry, 

tend to have varying levels of reliability due to at least the following reasons: 

a) lack of properly calibrated partial safety factors for the various limit states, 

b) lack of uniform guidance on partial safety factors, 

c) varying interpretations of existing national standards which are mostly concerned with 

buildings and classical infrastructure, and 

d) varying calculation models and assumptions. 

The wind energy industry has much to gain from harmonized, properly calibrated and 

globally accepted standards. In addition to promoting trade, such standards would improve 

competitiveness of wind energy relative to other sources of energy. There are several attempts to 

achieve consistent reliability in design practice. In the US market, the author of this dissertation 

participated in the development of a joint ASCE/AWEA guideline document, the “ASCE/AWEA 

RP2011 – Recommended Practice for Compliance of Large Land-based Wind Turbine Support 

Structures,” with the main objective of providing guidance in code interpretations and assumptions 

to achieve a token of consistency in design reliability (AWEA & ASCE, 2011). There is additional 

guidance with similar objectives by certification agencies such as Germanischer Lloyd’s 

“Guideline for the Certification of Wind Turbines,” (GL, 2010), DNV-GL’s “Support Structures 

for Wind Turbines,” (DNV-GL, 2016b) and DNV/Riso’s “Guidelines for Design of Wind 

Turbines,” (DNV/Risø, 2002), as well as national standards such as the “Guideline for Wind 

Turbines” in Germany (DIBt, 2012) and the “Guideline for Design of Wind Turbine Support 

Structure and Foundation” in Japan (JSCE, 2010). At the global level, there is an on-going effort 



12 
 

to develop the “IEC61400-6 Wind Turbines – Part 6: Tower and Foundation Design 

Requirements,” an international standard currently in Final Draft International Standard (FDIS) 

status, (IEC, 2016). This standard is aimed at reducing differences in global design practice and 

harmonizing wind energy design standards. The author of this dissertation has been helping 

coordinate U.S. involvement in the development of this standard. 

1.5 Problem Statement and Dissertation Objectives 

Ideally, the design of wind turbine foundations should ensure, to a pre-determined 

reliability level and for the design lifetime of the installation, that the foundation is safe against 

catastrophic failures as well as performance deficiencies that can hinder the proper operation of 

the wind turbine. Current design practice is based on limit states design principles with load cases 

and partial load factors determined per IEC61400-1 but with partial material resistance factors per 

various national or regional material codes. The reliability levels achieved through this design 

practice are only of implied nature because of reliance on interpretations relative to the coherence 

of the selected set of standards. The resulting implied reliability levels are those that would be 

anticipated from the coherent set of standards. Furthermore, material design codes are normally 

prepared for traditional building structures where the safety, performance, cost and longevity 

considerations differ from those for wind turbines. Therefore, it is not possible to say that the set 

of standards is coherent unless wind turbines are treated as regular building structures. Currently, 

there are no actual calibrations prepared to estimate the material safety factors that are appropriate 

for use in wind turbine support structure or foundation design. The IEC6100-6, a draft international 

standard, recommends partial resistance factors based on expert judgement and adopted target 

reliability deemed appropriate for wind turbine structures (IEC, 2008; Sorensen & Toft, 2014; IEC, 

2016). Thus, a primary objective of this dissertation is to propose and demonstrate a fully 
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probabilistic, reliability-based design procedure that achieves the target reliability intended in 

these documents without the need to specify any partial safety factors. The method is a Monte 

Carlo Simulation procedure termed the “direct Reliability Based Design (d-RBD)” method: an 

efficient process that is suggested as a practical and versatile design tool (Ben-Hassine & Griffiths, 

2012). 

To demonstrate the d-RBD method, this dissertation considers a foundation design 

developed through state-of-practice procedures and investigates three limit states that are 

commonly considered in the design of wind turbine support structure foundations. The three limit 

states are: a) foundation tilt as a serviceability limit state, b) foundation rotational stiffness as a 

serviceability limit state, and c) bearing capacity as an ultimate limit state. The aims of this exercise 

are to identify design variables with most influence on these limit states  and to compare results 

obtained through this tool to current design practices which are based on industry guidelines and 

extensions and interpretations of existing building design standards (e.g. AWEA & ASCE, 2011; 

DNV-GL, 2016b; IEC, 2016). Finally, an important objective of this dissertation is to show that 

the d-RBD method can serve as a design tool for the various foundation limit states. These results 

are of direct relevance to the on-going international effort to develop IEC 61400-6 as a harmonized 

standard for the design of WTG support structures and their foundations (IEC, 2016). In this 

regard, the desired outcome is either to include the d-RBD as an acceptable design tool or to base 

recommended partial safety factors on actual calibrations using d-RBD or similar higher order 

reliability analysis methods.  
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1.6 Dissertation Outline 

This dissertation contains several introductory and literature review chapters followed by 

research contributions consisting of novel implementations of a probabilistic method to extend the 

state of knowledge relative to shallow WTG foundation design and design reliability: 

 Chapter 1 (this chapter) contains background information on the growth of the wind energy 

industry, common WTG foundation systems and a state of practice summary relative to the 

design of shallow wind turbine foundations; it also presents the problem statement and 

objectives of this dissertation. 

 Chapter 2 describes deterministic computations for estimating elastic tilt, rotational 

stiffness and bearing capacity of shallow wind turbine foundations. These computations 

involve closed form and empirical formulations as well as numerical solutions such as the 

finite element method. This chapter contains a summary of bearing capacity formulations 

starting from vertical bearing capacity of a rigid disk on undrained clay, to general 

foundations on drained   soils, and to foundations subjected to highly eccentric loads. Based 

on this literature survey, select computational models are identified as most suitable for use 

for shallow wind turbine foundations. 

 Chapter 3 focuses on uncertainly that is prevalent in geotechnical design and describes its 

various sources, types and ways to quantify it. This chapter describes several probability 

density functions that are particularly suitable for modeling geotechnical design parameters 

as random variables. The chapter also reviews practical methods for estimating 

geotechnical variability based on limited geotechnical data, contains a literature review of 

reported variability ranges and proposes a tiered format with associated variability ranges 

for common geotechnical properties. 
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 Chapter 4 is a literature review of engineering design methods and the progression of these 

methods from the global factor of safety approach to partial factor reliability-motivated 

formats. This chapter also describes risk and reliability concepts and summarizes notional 

reliability targets embedded in leading design standards. Finally, this chapter presents ULS 

and SLS target reliability deemed appropriate for use with wind turbine support structures 

and their foundations.   

 Chapter 5 discusses reliability analysis and reliability-based design methods and presents 

the details of an efficient Monte Carlo Simulation method called direct Reliability Based 

Design (d-RBD) and suggests this approach as a practical, fully probabilistic engineering 

design tool. 

 Chapter 6 presents the results of using the d-RBD method to investigate tilt and rotational 

stiffness as two serviceability limit states of great interest in the design of shallow wind 

turbine foundations.  For the stiffness limit state, dynamic and static stiffness are 

investigated per industry guidelines and considered the cases where bedrock is deep and 

where it is within a depth of influence. The investigation includes calculating the reliability 

indices of the design for such scenarios for medium and high variability assumptions, 

identifying the main driving variables and highlighting the cost of uncertainty associated 

with these variables. 

 Chapter 7 investigates the use of the d-RBD method in the assessment of bearing capacity 

of shallow wind turbine foundations as an ultimate limit state for drained and undrained 

conditions. The investigation adopts the classical effective area approach for modeling 

shallow foundations subjected to combined loading. Like the earlier limit states, the chapter 
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presents the results for medium and high variability assumptions and identifies the driving 

variables for drained and undrained bearing capacity limit states. 

 Chapter 8 contains a summary of the original contributions of this work in relation to the 

results detailed in Chapters 6 and 7 for the three limit states under consideration. These 

results are also compared to those obtained based on current practice to identify areas of 

potential design optimization or areas where current practice may be too risky. This chapter 

also outlines recommendations for future work. 

 

  



17 
 

CHAPTER 2   

DETERMINISTIC ANALYSIS OF WIND TURBINE FOUNDATIONS 

This chapter describes common assumptions, analysis models and equations that designers 

of shallow wind turbine foundations perform to compute foundation tilt, rotational stiffness and 

bearing pressure; i.e., the foundation responses of relevance to three limit states considered in this 

dissertation. Covering these calculation models is useful in understanding the state-of-the-practice 

within the industry and in identifying some of the uncertain design variables that these models 

invoke. However, before describing these calculations, it is important to understand the nature of 

the loading that these foundations are subjected to. 

2.1 Loading Nature and Levels 

Wind turbine foundations are subjected to highly variable loads where the overturning 

moment is the predominant component. Such a loading scenario is described in the literature as a 

“combined loading.” Combined loading includes vertical (V ), moment ( M ) and horizontal ( H ) 

components. One approach to modeling a foundation subjected to combined loading is to replace 

the VMH loads by an equivalent inclined loading acting at an eccentricity e as shown in Figure 

1.1. The horizontal and vertical components of the equivalent load are equal to the original applied 

horizontal and vertical loads while the moment is replaced by the fact that vertical load is applied 

at the “load center” which is at eccentricity, e . When moment loading is present in two orthogonal 

directions such as xM and yM , the equivalent load would be eccentric in two directions and the 

load center would be at eccentricities x
x

Me V  and y
y

Me V . 
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Figure 2.1 Combined loading equivalency 

 

In order to simplify interpretations from experimental and numerical analyses of 

foundations subjected to combined loading, some researchers proposed the standard convention 

for loads and displacements shown in Figure 2.2 (Butterfield et al., 1997). In this convention, loads 

are proposed to be listed in the V M H  order, are applied at the geometrical center of the 

foundation and are attached to a coordinate system which translates with the foundation but does 

not rotate with it. Figure 2.2 illustrates this convention for a foundation subjected to V M H 

loading and undergoing vertical and horizontal displacements andw u and tilt  . 

Loads are evaluated per IEC61400-1 procedures for the various design load cases outlined 

in that standard (IEC, 2008). The latest edition of this standard, Edition 3, was published in 2008. 

Edition 4 is in final national balloting and is anticipated to be released in November 2018. A 

certification agency loads standard that is coherent with the IEC 61400-1 is the “DNVGL-ST-

0437: Loads and Site Conditions for Wind Turbines,” first published in 2016 (DNV-GL, 2016a). 

Load cases in these standards cover many design situations such as power production, power 

production plus occurrence of fault, start up, normal shutdown, emergency shutdown, parked 
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condition (standing still or idling), transport, assembly, maintenance and repair. These standards 

outline statistical procedures and acceptable experimental and numerical modeling methods for 

evaluating loads. Load cases are categorized into normal (N) extreme cases, abnormal (A) extreme 

cases and fatigue (F) cases and are assigned different partial safety factors. 

 

  

Figure 2.2 Conventions for loads and displacements 

 

 The predominance of the overturning component in wind turbine loads invites specific 

challenges in the design of shallow wind turbine foundations. A primary challenge is the 

development, as the moment loading is increased, of a zero-pressure or no-contact zone under the 

foundation.  The presence of a zero-pressure or no-contact area reduces the foundation area that 

engages the subgrade in providing stiffness, resisting tilt, and/or mobilizing bearing resistance. 

Stiffness and tilt responses vary as a function of the applied and the resulting reduced area, while 

bearing capacity mobilization may or may not occur as the foundation can overturn without a 

bearing capacity failure. To facilitate the treatment of different limit states which are invoked at 
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different load levels, industry standards introduced three serviceability load levels  (DNV-GL, 

2016b; IEC, 2016): 

1. S1 - Governing “normal extreme” loading: this is an extreme normal operational loading 

corresponding to a return period (or average recurrence interval) of 50 years; i.e., a load 

level that, on average, will be exceeded once every 50 years. The 50-year return period for 

the S1 load level was selected by the wind energy industry to provide a design basis that 

is, at least in terms of design life, comparable to that adopted by building codes for common 

structures. Another reason could have been to provide an additional cushion of safety that 

would be useful if a wind project is at the end of the 20-year design life and is being 

considered for repowering or extension of life. This is a growing interest within the wind 

energy industry in design life extension as projects commissioned around the turn of the 

millennium are nearing their original design life and are still performing well.     

2. S2 – “Frequent” load level: this load level corresponds to an annual probability of 

exceedance of 10-4; i.e., a load level that will be exceeded 0.01% of the time. This is 

equivalent to a period of exposure to higher loads of 0.87 hour per year (17.5 hours over a 

20-year design life), and 

3. S3 – “Quasi-permanent” load level: this load level corresponds to an annual probability of 

exceedance of 10-2; i.e., a load level that will be exceeded 1% of the time. This is equivalent 

to a period of exposure to higher loads of 87 hours per year (or a total of 1752 hours over 

a design life of 20 years). 

2.2 Accepted Zero-pressure Allowances 

Designers of most traditional civil engineering structures would avoid zero-pressure 

conditions under footings for the extreme characteristic load case. They achieve this by ensuring 
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that the footing is large enough to keep the resultant force acting within the Kern; i.e., within 

middle third of a rectangular foundation. Even though this limit is a typical requirement of ASD 

design codes, it is not necessary to maintain equilibrium of the foundation or for any other 

performance consideration so long as the consequences, such as reduced bearing area and 

increased bearing pressure, are addressed in the design. In foundation design, it is common practice 

to allow zero pressure under factored loads, i.e., the “strength limit state.” Some recent standards, 

especially those that are based on limit states design principles, are allowing for limited zero-

pressure to develop under characteristic (unfactored) normal extreme loads, especially for 

foundations bearing on rock (AASHTO, 2012). For wind turbine foundations, certification 

agencies and the wind industry at-large have adopted even less onerous limits such as allowing 

zero pressure over no more than half the foundation width under the characteristic extreme loading 

(S1 load level) and requiring compressive pressure over the entire foundation area for the S3 

serviceability level loading (DNV/Risø, 2002; GL, 2003; DNV-GL, 2016b; IEC, 2016). Some 

certification agency guidelines allow for minor exceedances of these limits provided that the 

designer can show through testing or calculation that the negative effects of cyclic gapping can be 

mitigated or are negligible. 

2.3 Strain Level Dependence of Elastic Moduli 

Geomaterials are nonlinear and their elastic moduli are known to be a function of strain 

level. Small strain elastic moduli are estimated from shear wave velocity measurements collected 

in the field through geophysical surveys such as Multi-Analysis of Shear Waves (MASW) 

campaigns and seismic cone penetrometer testing (SCPT). The following theoretical equation 

expresses the small strain shear modulus, 0G , in terms of in-situ density,  , and shear wave 

velocity, sV  : 



22 
 

 2
0 sG V   (2.1) 

The small strain Young’s modulus, 0E , can then be calculated from the following theory of 

elasticity equation in which   is Poisson’s ratio: 

 0 02(1 )E G    (2.2) 

The degradation of shear modulus with shear strain is a fundamental characteristic of 

nonlinear soil behavior. However, experimental studies on this degradation indicate that it depends 

on many factors including soil type, plasticity index, void ratio, over-consolidation ratio, cyclic 

loading and degree of saturation. Shear modulus degradation in commonly formulated as a 

function of shear strain. Formulations based on shear stress are not as popular. 

2.3.1 Formulations Based on Shear Strain 

Hyperbolic relationships of varying forms and number of required parameters have been 

used to obtain better fits to experimental data of the shear stress-strain curve (Kondner, 1963b, 

1963a; Kondner & Zelasko, 1963; Hardin & Drnevich, 1972; Borden & Gupta, 1996; Darendeli, 

2001). The original hyperbolic models, also known as KZ models, were simple because they 

required only two physical parameters, k  and z , to define the shear stress-shear strain curve in 

the following format: 

 ( ) 1
k z

  


  (2.3) 
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The parameters a and b have physical meanings because: 

i) at 0  , the tangent to the curve is equal to k  which is equal to the zero-strain 

shear modulus; i.e., 0k G , and 

ii) when   ,  the curve converges asymptotically to parameter z  which is equal 

to the shear strength, max ; i.e., maxz   .` 

Thus, Equation (2.3) can be re-written using meaningful parameters as follows: 

 0

0

0 max max

( ) 1 1

G
G

G

   
 

 
 

  (2.4) 

The above equation is simple, has meaningful parameters and properly models behavior at 

both ends of the strain spectrum. However, it lacks geometric flexibility to model test data at 

intermediate strain ranges. A modified hyperbolic model, described as a modified KZ or MKZ 

model, was proposed by Matasovic & Vucetic (1993) to improve the ability of the curve to fit test 

data. The model introduces two curvature parameters,   and  : 

 0

0

max

( )

1
MKZ

G

G


 

 



 

  
 

  (2.5) 

Defining an auxiliary reference strain max

0
ref G

   , the above equation can be re-written 

as: 

 0( )

1
MKZ

ref

G


 




 

   
 

  (2.6) 
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Sample plots of this relationship are shown in Figure 2.3 and Figure 2.4 to illustrate the 

effects of the curvature parameters on the shear stress – shear strain curve for the case where the 

ultimate shear strength is max 100kPa  . As can be seen in the figures, the curve maintains the 

asymptotic tendency to max  only for the case where the original hyperbolic equation is recovered; 

i.e., for 1.0   and 1.0  . For other cases, the ultimate shear stress either exceeds max  in an 

unbounded fashion or the material softens causing the curve to tend towards a lower ultimate shear 

stress.   

 

  

Figure 2.3 Sample MKZ curve showing effect of   parameter for max 100kPa    
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Figure 2.4 Sample MKZ curve showing effect of   parameter for max 100kPa   

 

The loss of fidelity of MKZ models at higher strains may not be important for low to 

medium strain levels prior to mobilization of the soil’s shear strength; i.e., for strains levels of 

about 10-3. However, at higher strain levels, this loss of fidelity can be problematic as the predicted 

shear strength is unbounded. For this reason, Shi & Asimaki (2017) proposed a flexible “hybrid 

hyperbolic or HH” formulation that extends the MKZ model to higher strain levels. The proposed 

formulation, termed “FKZ” model, requires a transition function, ( )w   , to transition the stress-

strain curve from small to large strain regimes. The hybrid relationship is defined as: 

  ( ) ( ) ( ) 1 ( ) ( )HH MKZ FKZw w            (2.7) 

where the ( )MKZ   is as defined in Equation (2.6) and ( )FKZ   is the hyperbolic model applicable 

at large strains and is expressed as: 
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0 max

( )
1

d

FKZ d

G

  
 





  (2.8) 

in which d  and   are new model parameters. The transition function is a modification of an S-

shape function to transition from the point where the MKZ formulation starts to deviate from being 

a reliable representation of soil behavior, judged by Shi & Asimaki (2017) to be between a shear 

strain of 10-4 and 3∙10-2. Shi & Asimaki (2017) suggested the following expression for the 

transition function:  

 
1.036

10log 4.039

1( ) 1

1 10 t
a a

w




  

  
   

 



  (2.9) 

in which parameter t  is the transition strain level when the MKZ model stops to be a reliable 

representation of soil behavior and parameter a  is the rate of transition.  With the preceding 

flexible formulation, Shi & Asimaki (2017) have proposed a nine-parameter model that covers 

shear modulus degradation over the full range of shear strains. Furthermore, the authors outlined 

a procedure for estimating all nine model parameters based solely on shear wave velocity profiles. 

 Dong et al. (2018) provided a review of these existing shear modulus degradation models 

and Vardanega & Bolton (2011) summarized practical methods for modeling the nonlinear 

dependence of shear modulus on shear strain for fine grained soils. A comparative study of 

modulus reduction methods conducted by Guerreiro et al. (2012) found that the family of 

normalized curves proposed by Darendeli (2001) are able to capture the influence of plasticity 

index, over-consolidation and confining pressure and for a larger strain range (Darendeli, 2001; 

Guerreiro et al., 2012). Per Shi & Asimaki (2017), the Darendeli model is verified for strains up 
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to 5∙10-3, the typical limit for resonant column tests. In the Darendeli (2001) method, the modulus 

ratio is expressed as a function of shear strain,  , as follows: 

 
0

1

1
ref

G
G 





 

   
 

  (2.10) 

where   is a curvature parameter and ref  is a reference shear strain used to normalize shear 

strain. This model is an MKZ formulation where 1   and 0.9190  . In the Darendeli model, 

the reference strain, ref  , is the strain corresponding to a modulus equal to half the small strain 

modulus; i.e., the shear modulus drops to half its initial value at the reference shear strain (

0
2

GG   at ref  ). In the original Hardin and Drnvich model, the reference strain is defined as 

the ratio of ultimate shear stress, u , to the initial shear modulus; i.e., 
0

u
ref G

  . Sample plots 

of shear modulus degradation curves for different curvature parameter   are shown in Figure 2.5. 

The shear modulus ratio or stress level factor (
0

G
G )  varies between 0 and 1 and is sometimes 

referred to as the normalized shear modulus because the ratio normalizes the shear modulus at a 

given strain level to that at zero strain. It is reported to depend greatly on shear strain amplitude, 

mean effective confining stress, soil type and plasticity index. The modulus ratio is reported to 

depend to a lesser extent on over-consolidation ratio, void ratio, degree of saturation, loading 

frequency, number of load cycles, and grain characteristics such as shape, size, gradation and 

minerology  (Darendeli, 2001). 
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Figure 2.5 Sample shear modulus degradation curves – strain level formulations 

 

2.3.2 Formulations Based on Shear Stress 

Most formulations of the shear modulus ratio are as a function of shear strain. However, 

there are some formulations as a function of shear stress that are potentially equally valid (Fahey 

& Carter, 1993; Mayne, 2001). In these formulations, the shear modulus ratio is called the stress 

level factor, fR , and is expressed as follows: 

 
0

1
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f
u

GR m
G



 

    
 

  (2.11) 

where  is shear stress, u  is the ultimate shear stress, and where m  and n  are empirical 

parameters with typical values of 1.0m  and 0.3n  for most soils (Poulos, 2018). Sample shear 

modulus degradation curves formulated as a function of shear stress are shown in Figure 2.6.  
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Figure 2.6 Stress level formulation of shear modulus degradation with m = 1 

 

2.4 Soil Strain Level Appropriate for Onshore Wind Turbine Foundations 

The goal of the preceding discussion on shear strain and shear modulus degradation is to 

assess the appropriate modulus reductions to adopt for wind turbine foundation design. Since most 

formulations are in terms of shear strain, the primary question is relative to strain levels expected 

for the soils supporting the foundation. For the most part, the wind energy industry has followed 

the 2002 DNV guidance on this subject (DNV/Risø, 2002). Per this guidance, the suggested 

subgrade shear strain level for extreme onshore wind turbine load cases is around 10-3.  Some 

recent instrumented foundations showed that cyclic shear strain level immediately under the wind 

turbine foundation was 2 x 10-4 and that it dropped rapidly with depth under the foundation (Yilmaz 

et al., 2014). This appears to suggest that the 10-3 to 10-2 strain range proposed by DNV is 



30 
 

conservative and may be more appropriate for ocean waves. For reference, the IEC61400-6 draft 

standard estimates that the soil shear strain should be in the range of 10-4 to 10-3 during normal 

operation and up to characteristic extreme loads (IEC, 2016). 

Diaz-Rodriguez & Lopez-Molina (2008) reviewed published data on strain and stress 

thresholds that mark changes in soil behavior and suggested four shear strain thresholds separating 

different behavior regimes: linear, volumetric, degradation and flow. The five regimes separated 

by these thresholds are: 

1. Very small strain (up to around 5 x 10-5): practically linear behavior and no 

degradation of moduli. 

2. Small strain (between 5 x 10-5 and 6 x 10-4): behavior is nonlinear but is fully 

recoverable (elastic); no degradation of moduli. 

3. Medium strain (up to 10-3): behavior is nonlinear with start of minor strength 

degradation; moduli degradation between 0.6 and 0.85. 

4. Large strain (greater than 10-3, dependence on number of cycles): behavior is 

nonlinear, and moduli are degradable with start of flow behavior 

5. Residual strains (dependence on number cycles): nonlinear behavior, degradable 

moduli and large residual strains.  

Based on the regimes identified above and strain levels between 10-4 and 10-3, wind turbine 

foundation soils would generally fall into the small to medium strain regimes where soil behavior 

is typically nonlinear with minor strength degradation. The MKZ-type shear modulus degradation 

model proposed by Darendeli (2001), which has been verified to strains up to 5∙10-3 (Shi & 

Asimaki, 2017), is therefore appropriate for onshore wind turbine foundations.  
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2.5 Foundation Tilt 

Foundation settlement and tilt are important serviceability design considerations. Issues 

associated with uniform settlement can often be addressed through regrading of the ground around 

the foundation. However, tower tilt due to differential settlement, tower installation imperfections 

and solar irradiation (uneven heating of the tower) can be more detrimental to turbine operation. 

Normally, differential settlement is caused by moment loading and varying subgrade support under 

the foundation. 

2.5.1 Common Tilt Limits 

Turbine manufacturers either specify the limit on tilt caused by differential settlement and 

an additional load to account for the total tower tilt, or they simply specify the limit on differential 

settlement tilt and include the additional load caused by total tower tilt in the specified loads. A 

typical limit on differential settlement tilt is 3mm/m, or 0.17 degree. This limit is also 

recommended in the ASCE/AWEA recommended practices document (AWEA & ASCE, 2011). 

To maintain the validity of the loads specified by the manufacturer, the foundation designer must 

keep tilt caused by differential settlement under the specified limit. For a rough idea on scale, a 3 

mm/m tilt limit corresponds to 60 mm (2.5 in) of differential settlement across a 20 m (65 ft) 

foundation. 

To put this common tilt limit of 0.17 degree in context, we can look at some lessons learned 

from pushover analysis of a tall slender structure with a mass at its top.  For a rigid slender structure 

of height, H , rigidly connected to a rigid base of width, B , resting on infinitely stiff subgrade, 

the critical inclination angle before collapse is (Gazetas, 2013, 2015): 

 ,
0.5 0.5arctancr

B B
H H

 
   
 

  (2.12) 
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For wind turbines with typical contemporary hub height of 90 m and foundation width of 

20 m, this critical tilt angle is around 6 degrees. This critical tilt angle is overly optimistic since 

neither the turbine nor the foundation is truly rigid, the supporting soils could also under undergo 

plastic deformations and P   effects could hasten the toppling of the tower. Furthermore, the 

applied wind turbine loads are dynamic and do not increase monotonically as is the case for a 

pushover analysis. Nevertheless, comparing 0.17 to 6 degrees is a useful exercise. The so-called 

P   effect is the moment added to the applied moment when a structure deflects and is equal to 

vertical load P  times the horizontal deflection  . Many times, when a structure nears its load 

carrying capacity, this additional moment is what precipitates the collapse.  

2.5.2 Estimating Foundation Tilt 

Foundation settlement and tilt due to soil compressibility can be caused by immediate 

elastic deformation of the supporting soils within the depth of influence as well as longer term 

consolidation and creep settlement if fine grained soils are present. However, due to the dynamic 

nature of the applied loads, it is difficult to select a sustained load level that is applied long enough 

for pore water pressure to dissipate and consolidation settlement to occur. This load level is the 

subject of debate within the industry, such as within the committee working on the development 

of the IEC61400-6 international design standard (IEC, 2016). The FDIS version of this document 

requires that settlement and tilt be evaluated at the S3 load level both for short term (elastic) and 

long term (consolidation) deformations.   

 For consolidation settlement estimates, adopting the S3 load level may be conservative 

since the total duration of this level being exceeded (about 1750 hours or 73 days in 20 years) is 

not applied continuously, but in short-lived exceedances over the design life of the project which 

are not long enough to cause porewater pressure dissipation and soil consolidation. On the other 
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hand, it could be argued that the governing normal extreme load level (S1) should be selected for 

estimating elastic deformations since all it takes is one load exceedance to cause an immediate 

deformation that exceeds the limit. However, the 50-year return period for the S1 load level is 

significantly longer than the typical 20 to 25-year design life of a wind project. Thus, an 

appropriate load level to use in estimating elastic deformations ought to be lower. Therefore, the 

adoption of the S3 load level for both elastic and long-term deformations appears to be a reasonable 

compromise. It should be noted that in design practice, consolidation settlement is only considered 

when the soil profile within the depth of influence contains saturated, fine grained soils. 

Furthermore, it is typical to include the consolidation settlement in the total, i.e., uniform 

settlement estimate based on an equivalent uniform pressure. To account for the moment loading 

which gives rise to non-uniform soil pressure and for variability of the soils under the foundation, 

many designers find it prudent to assume a consolidation tilt magnitude based on a portion of the 

uniform consolidation settlement. In this work, we limit our focus to elastic tilt.  

A common theoretical formula for calculating elastic rotation of a surface foundation under 

an overturning moment with the base in full contact is as follows (Poulos & Davis, 1974; Madhav 

& Poorooshasb, 2001): 

 
2

2
1tan( ) M I
EB L 
 

   (2.13) 

where E is the elastic modulus of the subgrade soils, M is the applied moment at the S3 load level, 

L is footing length, B is footing width and I is a shape and rigidity influence factor that is a 

function of foundation aspect ratio, Figure 2.7 (Bowles, 1996). For a rigid, square foundation, the 

influence factor is 4.17I  . This influence factor agrees very well with results published by 

Gazetas & Hatzikonstantinou (1988) which were based on extensive parametric boundary element 
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analyses and which yielded 4.26I  . These analyses also investigated the effect of embedment 

(trench effects) and sidewalls and found that trench effects were negligible compared to the effects 

of sidewalls. Wind turbine foundations are buried without sidewalls. Thus, it is convenient, 

reasonable and conservative to ignore any beneficial trench and sidewall effects.  

For circular foundations with diameter B , the above equation becomes: 

 
2

3
1tan( ) M I
EB 
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   (2.14) 

in which the influence factor 𝐼ఏ varies between 3.0 for flexible foundations and 5.5 for rigid 

foundations (Tettinek & Matl, 1953; Taylor, 1967; Poulos & Davis, 1974). The above expressions 

assume the foundation to be bearing at ground surface without embedment and ignore the effects 

of vertical loads such as the self-weights of the turbine, foundation and the foundation backfill. 

Influence factors are tabulated in Bowles (1996) and were based on Taylor (1967) for rigid 

foundations and Tettinek & Matl (1953) for flexible foundation, Figure 2.7. Generally, industry 

practice treats the gravity-based foundation as rigid; i.e., 5.5I  . This assumption can be 

challenged for the larger foundations needed to support bigger wind turbines, especially if such 

foundations are bearing on hard or rock subgrades. However, this assumption has not been 

questioned probably because it is on the safe side. For polygonal foundation shapes such as a 

hexagon or an octagon, it would be logical to adopt a shape influence factor for a rigid foundation 

that varies between that for a square foundation, i.e., 4.2, and a circular foundation, i.e., 5.5.  

Recalling that industry practice and guidelines do not allow gapping or zero pressure under 

the foundation for the S3 load level, the plan dimensions in these equations are the full foundation 

dimensions. Furthermore, per the draft IEC61400-6 standard, the elastic modulus used in this 
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estimate should be the static modulus which accounts for degradation associated with strain level. 

The tilt check is a simple pass/fail verification without any safety factors beyond the conservatism 

built into these assumptions. 

 

Figure 2.7 Shape influence factor for rectangular footings 

 

 

2.6 Foundation Stiffness 

Foundation stiffness is another serviceability limit state of great relevance to WTG 

foundation design. This section provides a literature review of foundation vibration modeling and 

describes how these methods are applied to the design of wind turbine foundations. 
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2.6.1 Analysis of Foundation Vibrations 

In a 1983 state-of-the-art paper, Gazetas reviewed the progress of methods for analyzing 

the dynamic response of foundations subjected to machine-type loadings (Gazetas, 1983). The 

review covered the major milestones of this progress starting with the “dynamic Boussinesq” 

problem (Lamb, 1904), to the first attempted engineering application of “elastodynamic theory” 

(Reissner, 1936), and to the now widely accepted lumped-parameter inertia-spring-dashpot model 

for all modes of vibration (Richart & Whitman, 1967). In this model, four modes of vibration are 

considered: vertical, torsional, horizontal (lateral translation) and rocking (rotational). The vertical 

and torsional oscillation modes are axisymmetric and may be modeled independently of each other 

(uncoupled) using a single degree of freedom system for each mode: 

 ( )x x x xm x C x K x P t      (2.15) 

where x , x and xare the vertical displacement (or angle of rotation around the vertical axis; i.e., 

twist), vertical velocity (or angular velocity) and vertical acceleration (or angular acceleration), 

respectively. Parameters xm , xC and xK are equivalent mass (or the effective mass polar moment 

of inertia, zI ), effective damping and effective stiffness in the two different oscillation modes, 

respectively; while ( )xP t  is the dynamic loading applied by the vibrating machinery in the vertical 

or angular twist directions.  

The other two modes; i.e., lateral translation and rocking, are antisymmetric and are 

therefore coupled. Theoretically, a two-degree of freedom system is necessary to represent such 

modes. In this case, the displacement, velocity and acceleration terms in the above equation of 

motion are 2 1  vectors to represent the horizontal and rocking degrees of freedom and the C  and 

K  parameters are 2 2  matrices with the off-diagonal terms representing the coupling terms. For 
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surface or shallow foundations, the coupling terms are small and are normally neglected for all 

practical purposes. However, for deep foundations and stubby piles, the coupling terms are as 

important as the diagonal terms and cannot be neglected. 

The lumped-parameter model (LPM) proposed by Whitman & Richart (1967) adopted 

frequency-independent parameters m , C and K . However, since stiffness is known to be a 

function of frequency, Richart & Whitman (1967) introduced a fictitious mass to keep the resonant 

frequency constant and to obtain good agreement between the resonant frequency of the LPM 

predictions and the actual system response. In a more recent review of foundation vibration 

analysis methods, Dobry suggested that assuming frequency-independent stiffness and damping is 

not unreasonable for the vertical and horizontal vibration modes of circular or square foundations 

(Dobry, 2014). However, Dobry suggested that for foundations with higher aspect ratios and for 

the rocking and torsional vibration modes, assuming frequency independent parameters is not 

reasonable. 

A solution that has proven effective in modeling the dependence of stiffness and damping 

on frequency is through complex numbers and the concept of impedance function or dynamic 

stiffness. The complex-valued impedance function is used to model stiffness and damping 

characteristics of foundations under dynamic loads and has a real part and an imaginary part as 

follows (Veletsos & Wei, 1971; Gazetas, 1975, 1991): 

 
jj jZ k iwc    (2.16) 

in which j   denotes the degree of freedom in which vibration is occurring, i  is the imaginary 

number, w  is the angular frequency of the excitation in ( s
rad ), jk  is stiffness and jc  is damping. 
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This expression is sometimes written in the following form where j  is interpreted as percent of 

critical damping: 

 (1 2 ) where
2

j
j j j j

j

wc
Z k i

k
      (2.17) 

  Based on a literature review of available impedance solutions, Pais & Kausel (1988) 

proposed that a simpler form of the impedance function as a product of static stiffness, jK , and a 

complex, frequency-dependent, dynamic modifier, jS :  

 0 0 0( ) where ( )j j j j j jZ K S a S a k ia c     (2.18) 

  In the above equation, 0a  is the dimensional frequency defined as 0
s

wba V  where b  is 

half the foundation width, i.e., 2
Bb  , and sV  is the shear wave velocity of the soil. 

For lumped-parameter models with multi-degrees of freedom, an impedance matrix Z  is 

defined such that its terms, for example for a two-degree of freedom system, ijZ  can be expressed, 

as a function of dimensional frequency, 0a , as follows (Andersen, 2010): 

 0 0( ) ( )ij ij ijZ a K S a   (2.19) 

where ijK  is the static stiffness and 0( )ijS a  is a frequency-dependent dynamic stiffness coefficient. 

The frequency-dependent stiffness coefficient , 0( )S a , had been suggested to be made up of two 

parts: a singular part, 0( )sS a , and a regular part, 0( )rS a  (Wolf, 1994): 

 0 0 0( ) ( ) ( )s rS a S a S a    (2.20) 
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The singular part is of the form: 

 0 0( )sS a k ia c     (2.21) 

where k and c  are stiffness and damping constants selected such that 0( )sKS a  is equal to the 

total stiffness in the high frequency limit, i.e., as 0a  . The regular part, 0( )rS a  is the remaining 

part of the dynamic stiffness; i.e.: 

 0
0 0

( )( ) ( )r s
Z aS a S a

K
    (2.22) 

and is calculated by fitting a rational filter to the above result using domain transformation methods 

(Andersen, 2010). Some key features of the foregoing formulation are: 

1. It is exact for the static limit since 0( ) 1S a   as 0 0a  ; hence (0)Z K , and 

2. It is exact in the high frequency limit since 0( ) 0rS a   and 0 0( ) ( )sS a S a  as 0a  .  

2.6.2 Dynamics of Shallow Wind Turbine Foundations 

The foregoing vibration analysis review is applicable to general machine foundations with 

multiple modes of vibration and where excitation frequency can be high. This review is equally 

valid for wind turbine foundation dynamics. However, some simplifications are possible for wind 

turbine foundations. For example, the excitation frequency under normal and extreme operational 

conditions is typically less than 1 Hz; i.e., in the low frequency range. Thus, the frequency 

dependence can be ignored.  Furthermore, theoretically there are three rotational and three 

translational degrees of freedom. The rotational degrees of freedom consist of two rocking 

freedoms about the two orthogonal horizontal axes and one torsional freedom about the vertical 

axis. The three translational degrees of freedom are in the three orthogonal axis directions. Due to 
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symmetry and due to the nature of the loading where the overturning moment is the predominant 

load component, the torsional and vertical vibrations are negligible and are normally ignored. In 

common practice, only the coupled rocking and horizonal modes are considered. For shallow 

foundations, the coupling terms are also negligible and the rocking and horizontal modes can be 

verified independently. For deep and short pile foundations, the coupling terms are significant and 

must be considered.    

2.6.3 Verification of Foundation Stiffness Requirements 

To ensure that quoted loads remain valid, turbine manufacturers specify the minimum 

required rocking and lateral impedances (dynamic stiffnesses). More recently, some turbine 

manufacturers started to also specify the minimum static stiffnesses, typically as fractions of the 

dynamic stiffnesses. In addition to validity of loads, an important reason for minimum stiffness 

requirements is to avoid amplification of movements due to resonance of the tower-foundation 

system with applied excitations. In designing wind turbine support structures, it is important to 

ensure safe separation of the different eigen-mode frequencies of the tower-foundation system and 

excitation frequencies. For example, DNV/Risø recommends a minimum 10% frequency 

separation the first natural frequency of the system and the rotor and blade passing frequencies 

(DNV/Risø, 2002). Sometimes, when separation is not possible, wind turbine operational controls 

are designed to ensure a “safe pass through.” 

Due to the simplifications that can be assumed for wind turbine foundations, only the 

rocking stiffness is investigated in this dissertation. Based on elastic theory, the rocking stiffness 

of a surface circular foundation supported on an elastic half space can be calculated as (Arya et 

al., 1979): 
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  (2.23) 

where R  is the radius of the foundation ( / 2R B ),   is Poisson’s ratio and G  is the shear 

modulus. Wind turbine foundations are typically embedded and have backfill over them. 

Furthermore, bedrock or a hard stratum is not too deep below the bearing depth of the foundation. 

These factors improve the foundation stiffness and damping. It is common for designers to 

multiply the stiffness by an enhancement factor,   For embedded foundations where bedrock or 

a hard stratum is within a depth of influence, the rocking stiffness as calculated above is multiplied 

by an enhancement factor,  (DNV-GL, 2016b): 
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R H H
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  (2.24) 

In the above equation, D  is the foundation depth and bH  is the distance from the bottom of the 

foundation to bedrock or hard stratum. The rocking stiffness equation then becomes: 
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  (2.25) 

Dynamic and static stiffnesses are checked at different strain levels and with due 

consideration of zero-pressure conditions if they are present at the different serviceability load 

levels (as allowed in common industry practice). Ntambakwa et al. (2016) surmised that the 

dynamic stiffness should be evaluated using strain-corrected dynamic shear modulus. The zero-

strain shear modulus is commonly obtained from shear wave velocity measurements and corrected 

for strain level. Ntambakwa et al. suggested that the strain-level correction for the dynamic 

stiffness estimate should be for operational level loads. On the other hand, they suggested that the 
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static stiffness should be based on a shear modulus corresponding to higher strain levels 

appropriate for the extreme load cases. They reference the 2002 DNV guidance on this subject 

(DNV/Risø, 2002). Per this guidance, the strain levels to be expected for wind and ocean waves in 

up to 10-2, typically around 10-3. In Section 2.4, it was suggested that this DNV guidance may be 

conservative and that a more appropriate shear strain range is 10-4 to 10-3.  We will adopt this strain 

level range for the analyses in this dissertation. For reference, the draft IEC6400-6 standards makes 

the following requirements (IEC, 2016): 

1. Dynamic stiffness is to be verified using small strain shear modulus at the S3 load level 

and accounting for reduced contact area if this is present at this load level 

2. Static stiffness is to be verified using a shear modulus that is reduced for the appropriate 

strain at the S1 load level and considering reduced contact area under this load level. 

This dissertation investigates rocking stiffness at the S1 load level following this 

recommendation. However, it would be interesting to compare results from this 

procedure to the findings of Gazetas et al. (2013) which included rocking stiffness of 

foundations in the nonlinear range and with loss of contact.  

2.7 Bearing Capacity 

The built environment contains structures that are supported on foundations and that have 

performed adequately for centuries.  It is evident that the design of such foundations had ample 

safety margins above the ultimate loads that they could withstand. However, to this day, there is 

no general exact analytical solution for computing the ultimate vertical load that a foundation can 

carry even though there are several rigorous equations or coefficients for specific geometry, 

loading and/or geotechnical conditions. It is difficult to develop broader analytical solutions 

because geomaterials are highly variable and exhibit complex behavior that is dependent on stress 
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history, loading rates, presence of groundwater, and many more factors. This section contains a 

brief historical literature review of bearing capacity formulations and concludes with select 

equations that are in common use within the wind energy industry. 

2.7.1 Basic Bearing Capacity and its Extensions 

Early attempts to analyze ultimate bearing capacity of shallow foundations were based on 

Rankine’s classical earth pressure theory developed in the late 19th century.  Among those attempts 

were those by Pauker in 1889 and Bell in 1915 (Murthy, 2002).  Later, the approach to this problem 

shifted to applications of plasticity theory. Prandtl investigated punching penetration of metals by 

subdividing the bearing material under and around the area under pressure into five zones: one 

centered triangular zone immediately under area and two wedges on either side. Failure would be 

equally likely to occur to the left or right by pushing out of the central zone and two zones, with 

all three zones forming what has been known as Prandtl’s wedge. Prandtl applied Mohr’s stress 

theory to arrive at a simple analytical equation for computing the ultimate punching resistance 

based on the material’s shear strength in plain strain, c   (Prandtl, 1920, 1921): 

  2 5.14ultq c c     (2.26) 

The solution provided by Prandtl was quickly adapted to shallow foundations and was 

recognized as a valid solution for a strip footing subjected to a vertical load and bearing at the 

surface of a half space undrained clay medium, Figure 2.8. Prandtl’s solution was later proven to 

be exact for these assumptions using the lower and upper bound theorems of the theory of 

plasticity. 
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Undrained clay, ø=0

V

 

Figure 2.8 Cross-section of footing and Prandtl's wedge 

 

In the early 1940’s, Buisman, Caquot and Terzaghi extended Prandtl’s equation to include 

the effects of overburden and width of the foundation (Terzaghi, 1943).  The resulting equation 

for a strip footing of width B , depth D  and undergoing the general shear failure mode shown in 

Figure 2.9 is elaborated assuming superposition principle as follows: 

 0
1
2ult c qq c N q N BN      (2.27) 

where 0q D   is the effective overburden pressure at foundation bearing depth and cN  , qN  and 

N  are bearing capacity coefficients. The cN  and qN  coefficients have their origins in Prandtl’s 

work and are expressed rigorously as follows: 

 tan 1 sin ( 1)cot
1 sinq c qN e and N N   


    


  (2.28) 
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However, the N  term has several published approximations but the version produced by Martin 

assuming an associative flow rule is rigorous (Hansen, 1970; Martin, 2005): 

 3 ( 1) tan
2 qN N     (2.29) 

Equation (2.27) is the most general expression for strip footing bearing capacity that can 

possibly be argued to be rigorous or “exact.” Subsequent extensions obtained by various 

researchers to account for differing conditions such as foundation shape, load inclination, ground 

slope and base inclination are approximate and are typically in the form of correction factors 

applied to the terms of the basic bearing capacity equation, Figure 2.10  (e.g. Meyerhof, 1953; 

Hansen, 1970; Vesic, 1975). 

 

Figure 2.9 Terzaghi's general bearing failure surfaces 
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Figure 2.10 Footing and loading arrangements affecting bearing capacity 

 

2.7.2 Generalized Bearing Capacity Equations 

For problems treated in this dissertation, the foundation is always assumed to be flat (no 

base inclination). The ground is also assumed to be flat, even though it is common for a wind 

turbine to be located on top of mountains and close to the edge of mesas. The generalized bearing 

capacity equations adopted in this dissertation are in agreement with the forms recommended by 

DNV GL, a leading certification agency in the wind energy industry (DNV, 1992; DNV-GL, 

2016b). Per DNV GL guidance, bearing capacity should be verified for undrained and/or drained 

conditions as appropriate for the project conditions. Furthermore, this guidance recommends the 

verification of two bearing capacity rupture modes: Rupture 1 for “normal” eccentricity cases and 

Rupture 2 for “extreme” eccentricity cases (Figure 2.11). 
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Figure 2.11 Two bearing capacity rupture modes (DNV-GL, 2016b) 

 

2.7.2.1 Drained Conditions 

For drained conditions, the “generalized” bearing capacity equation for a c    soil 

(effective stress analysis) is expressed as follows: 

 0
1
2ult c c c c q q q q effq c N s d i q N s d i b N s d i

         (2.30) 

Where (i) cN  , qN  and N  are bearing capacity coefficients as defined in equations (2.28) and 

(2.29), (ii) cs  , qs  and s  are shape correction factors (Table 2.1), (iii) cd  , qd  and d  are depth 

correction factors (Table 2.1), (iv) ci  , qi  and i  are load inclination correction factors (Table 2.1), 

(v) effb  is effective foundation width, and (vi)    is effective unit weight of the soil.  
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Table 2.1 Shape, depth and load inclination correction factors (DNV-GL, 2016b) 

Term 

Affected 

Foundation 

Shape 
Foundation Depth Load Inclination 

cN  1 0.2 eff
c

eff

b
s

l
   1 0.4c

eff

Dd
b

    
2

1
cotc

eff

Hi
V A c 

 
     

 

qN  1 0.2 eff
q

eff

b
s

l
   21 1.2 (1 sin ) tanq

eff

Dd
b

       
2

1
cotq

eff

Hi
V A c 

 
     

 

N  1 0.4 eff

eff

b
s

l    1.0d   
4

1
coteff

Hi
V A c 

 
     

 

 

2.7.2.2 Undrained Conditions 

For undrained conditions (constant volume response of bearing soils and 0  ), the 

bearing capacity equation reduces to: 

 0 0 0 0
0u u c c c cq s N s d i q    (2.31) 

where 0 2 5.14cN    , 0 1 0.2 eff
c c

eff

b
s s

l
    and 0 1 1 1

2 2c
eff u

Hi
A s

   . The depth correction 

factor can conservatively be taken as unity, i.e., 0 1.0cd  . 

2.7.2.3 Extreme Eccentricity 

Under extreme eccentricity, defined by DNV GL as a load eccentricity greater than 0.3B , 

DNV GL recommend that an additional rupture mode, i.e. Rupture 2 in Figure 2.11, be verified 

and provide a different bearing capacity equation for this check. This dissertation will not consider 

this rupture mode since current practice for designing onshore wind turbine foundations does not 

generally approach this eccentricity. 
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2.7.3 Effective Area Approach 

Eccentric loads produce a non-uniform pressure distribution under the foundation. If the 

load center is outside the middle third of the foundation dimension (in either the B   or L   

directions, or both), part of the foundation either loses contact or has zero contact pressure with 

the soil.  In this case, bearing resistance is provided only by the part of the foundation area where 

the soil is providing support. As overturning loads increase, the contact area that is providing 

resistance decreases. Therefore, the bearing capacity of a foundation that is subjected to combined 

loading is a function of not only the foundation shape, embedment depth and the strength of the 

bearing materials, but also of the applied loading. For combined loading, the nature of the loading 

changes some of the basic geometric parameters that go into the bearing capacity equations. 

Moreover, for certain combinations of moment, horizontal load and vertical load, the failure mode 

may change. For example, the critical failure mode can change from a general shear failure for 

predominantly vertical loading to a sliding failure for predominantly horizontal loading. Combined 

loadings introduce complex soil-structure interactions dependent on foundation-soil relative 

stiffnesses and the relative magnitudes of the loading components. The limitations of the 

generalized bearing capacity equation are therefore apparent, especially for highly eccentric 

loading. Generalized bearing capacity equations found in the literature may work well for common 

foundations with reasonable load eccentricity but are not adequate for foundations subjected to 

large overturning moments such as wind turbine foundations. 

A classic approach to deal with the reduced area caused by eccentric loading is to base 

bearing capacity on the effective dimensions of the foundation. This approach seemed reasonable 

and worked well for traditional structures. For lack of a better alternative, or probably because of 

its familiarity, this approach is also widely used for designing wind turbine foundations. 
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Assumptions and derivations of effective area dimensions for common foundation shapes such 

rectangular, octagonal or circular, are published widely. A common approximation of the effective 

area for circular or octagonal foundation is a uniform pressure rectangular area centered on the 

load center (Figure 2.12), (DNV-GL, 2016b).   

 

Figure 2.12 Uniform pressure area centered on load center 

 

The uniform pressure effective area is constructed such that its geometrical center 

coincides with the load center while adhering as much as possible to the true geometry of the 

foundation. For a circular foundation of radius R  and resultant load eccentricity e , the contact 

area is bounded by two circular segments with common secant midpoints located at the load center 

Figure 2.13. The area of this shape is equal to: 



51 
 

 2 2 22 acoseff
eA R e R e
R

        
  (2.32) 

and its major axis dimensions of this shape are: 

 
2

2( ) and 2 1 1
2

e
e e

bb R e l R
R

      
 

  (2.33) 

This contact shape is further simplified as an equivalent rectangular area with the following 

effective dimensions:  

 and effe
eff eff eff e

e e

lll A b b
b l

    (2.34) 

The effective rectangular area dimensions given by equations (2.34) are used in the generalized 

bearing equations and the corrections factors described in Section 2.7.2.  

2.8 Interaction Curve Approach  

Researchers are drawing on plasticity theory, numerical methods and experimental testing to study 

the modes of failure and nonlinear soil-structure interactions of rocking foundations. Houlsby & 

Purzin (1999) investigated the extension of Prandtl’s theory to a strip footing subjected to 

combined loading. They found that while Prandtl’s equation can be proven to be exact using the 

lower- and upper- bound theorems of the theory of plasticity for a strip footing under vertical 

loading, the same cannot be said for the case involving combined loading.  In fact, the existence 

of a unique or exact solution could not be proven. Houlsby & Purzin (1999) described a method 

that is based partly on the bound theorems of plasticity and on additional necessary ad-hoc 

assumptions to arrive at various solutions that bracket a “working” solution. 
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Figure 2.13 Effective foundation dimensions. Courtesy (DNV-GL, 2016b) 

 

Many other researchers tackled the problem of foundations subjected to combined loading 

using sophisticated finite element formulations to study the various failure mechanisms under 

different loading scenarios. Researchers found that it was convenient and insightful to present 

results of such investigations in the form normalized failure envelopes which are interaction 

curves, similar in concept to moment-axial load interaction curves for axial column capacity. For 

a column capacity curve, VM  combinations that plot within the curve are safe, while for those that 

plot outside indicate inadequate column load carrying capacity. The failure envelope concept was 

used for foundation stability assessment by Roscoe & Schofield (1957) and the method was 

elaborated further by Murff (1994). It is widely used for offshore structure foundations where 

loading is highly eccentric due to seafloor depth and considerable horizontal loads caused by wind 

and wave actions. For offshore structures, failure envelopes are often expressed as three-
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dimensional yield surfaces in normalized VMH  space. Combinations of VMH  within this surface 

are acceptable while those outside of it are unsafe. Another form to present VMH interactions is 

through a tilted ellipsoid in two-dimensional space. There is considerable research describing the 

development and applications of the failure envelope approach (Griffiths, 1980; Bell, 1991; 

Butterfield & Gottardi, 1994; Bransby & Randolph, 1997; Gottardi et al., 1997; Houlsby & Purzin, 

1999; Bransby, 2001; Cassidy et al., 2005; Zhang, 2008; Cassidy et al., 2013; Shen et al., 2016). 

For onshore structures (wind or otherwise), foundation sliding is not a common failure mode. 

Therefore, the horizontal load component is often combined with the moment component as an 

additional moment ( H  times the moment arm) and the interaction curves are elaborated in 

normalized VM  space. Based on literature review, the following parabolic equation is found to be 

a good fit for published VM  interaction curves (Gottardi & Butterfield, 1993; Tang et al., 2015): 

 
2

1 11m
FS FS

      
   

  (2.35) 

In the above equation, 1  and 2  are curve fitting parameters, 0uVFS V  is the bearing capacity 

factor of safety (under pure axial loading), and 
0u

Mm BV  is normalized rocking moment. 

Fitting parameters from several published studies are shown in Table 2.2 below. These interaction 

curves are plotted on Figure 2.14. There are a few important notes to make based on this table and 

figure, as discussed in the next subsections. 
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Table 2.2 VM interaction curve fitting parameters and maximum moment capacity 

Reference 
Parameter 

1  

Parameter 

2  

Moment 

Capacity 

FS at Maximum 

Moment Capacity 

Meyerhof (1953) 0.50 0.50 00.074 uV B 2.25 

Loukidis et al. (2008) 0.44 0.625 00.078 uV B 2.2 

Gottardi & Butterfield (1993) 0.36 1.0 00.09 uV B  2.0 

Gazetas (2015) 0.55 1.0 00.138 uV B 2.0 

 

 

2.8.1 General VM Interaction Curve Comments  

The interaction curve developed by Meyerhof which is based on the effective area approach 

discussed in the earlier section as the method in use by the wind energy industry, this curve yields 

the lowest maximum moment capacity and is therefore the most conservative. Furthermore, it 

should be noted that all curves yield a maximum moment capacity at 2FS   with the Meyerhof 

maximum moment capacity at 2.25FS  . Incidentally, this is also the bearing capacity factor of 

safety adopted by the wind energy industry but the reasoning used to arrive at this number is not 

based on interaction curves (AWEA & ASCE, 2011). If we accept that the maximum moment 

capacity is around 00.10 uV B , a load equal to the vertical bearing capacity 0uV  that is placed at an 

eccentricity of 
0

0.10u

u

M BV   would cause bearing capacity failure. 
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Figure 2.14 Normalized VM interaction curves by several researchers 

 

2.8.2 VM Curve Comments Relative to Wind Turbine Foundations 

Wind turbine foundations are lightly loaded in the downward vertical direction; i.e., gravity 

loads are low. However, they are subjected to large overturning moments. Under these 

circumstances, uplift behavior of the foundation will almost always prevail, Figure 2.14 (Gazetas, 

2015). Per commonly accepted industry practice, they are sized to maintain positive contact with 

the subgrade at S3 level loads and not to lose contact for more than half the foundation width at 

the S1 level loading. This means that for loads between the S3 and S1 levels, zero pressure or no 

contact conditions exist over a length ranging from zero to half the foundation width. Gazetas et 
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al. (2013) investigated nonlinear rocking stiffness of surface foundations bearing on undrained 

half-space. Their investigation used advanced finite element modeling involving a tensionless 

contact algorithm to model loss of contact with the subgrade, as well as shear modulus degradation 

with strain level. They describe the foundation-soil system response to increasing overturning 

moment as going from elastic and fully bonded response at low load levels, to nearly-elastic but 

nonlinear response when part of the foundation loses contact with the subgrade and, finally, to full 

mobilization of overturning failure mechanisms or full mobilization of bearing capacity 

mechanisms under very extreme eccentricity. Due to the low vertical loading, wind turbine 

foundations are likely to fail by overturning mechanisms rather than by bearing capacity 

mobilization. In fact, based on finite element analyses, Kourkoulis et al. (2012) proposed the 

following approximation of the overturning angle as a function of factor of safety: 

 
,

1 11 1 log
0.53

c

c

h
FS BFS


 

         
   

  (2.36) 

The tilt angle is plotted for several wind turbine hub height and foundation width combinations, 

starting with a common combination of 80 m hub height and 17 m base and considering two more 

unusually slender combinations. For a 20 m wide foundation supporting a 90m hub height turbine 

and designed for a bearing capacity factor of safety 2.25FS  , the approximate critical tilt angle 

that would cause toppling is about 3.6 degrees. Recall that we estimated the critical angle of rigid 

system and subgrade ( FS   ) to be around 6 degrees in Section 2.5.1. Both estimates are still 

optimistic due to load dynamics. However, it is still useful to compare these critical tilt limits to 

the common limit of 0.17 degree.  
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Figure 2.15 Approximate critical tilt angle (Kourkoulis et al., 2012) 

 

2.9 Deterministic Finite Element Analysis 

The finite element method is a powerful numerical modeling tool that is widely used in 

structural and geotechnical analysis and design. Soil-structure interactions can be captured in detail 

and the results can be readily used for design purposes. In this section, we illustrate an example 

implementation of the finite element method to study wind turbine foundation soil-structure 

interactions and obtain the response quantities necessary for foundation geotechnical as well 

structural (reinforced concrete) design.  Figure 2.16 shows finite element models of circular and 

octagonal footings produced using STAAD.Pro, a commercial general purpose finite element 

program (Bentley, 2018). The footings are modeled using plate elements. The subgrade is 

represented using compression only springs with spring coefficients computed at every node based 
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on an assumed modulus of subgrade reaction and on the tributary area for the node (Terzaghi, 

1955). Typically, plate element models with compression only springs are enough to reproduce 

the basic soil-structure interaction features and provide the main response quantities (bearing 

pressure, moments, etc.) needed for design. If more detailed response features are of interest, solid 

models are normally required. 

To investigate the influence of the subgrade stiffness, three modulus of subgrade reactions 

values are considered, representing soft, medium and hard subgrades. The selected values are 

based on typical ranges  (e.g.Das, 2007). The overturning moment is applied at the center and is 

distributed around the tower base through an assemblage of stiff columns and beams. Foundation 

dimensions and loading are representative of a typical foundation for an 80-meter hub height 

WTG. The width or diameter of the octagonal and circular foundations have been selected so that 

two foundations have the same area. All other dimensions and unit weights are identical for both 

foundations and are summarized in Table 2.3. 

 

  

Figure 2.16 Finite element models of octagonal and circular WTG foundations 
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Table 2.3 Parameters used in the finite element analyses 

Foundation dimensions Unit weights and moduli 

Diameter or width Circle: 17.0 m 

Octagon: 16.5 m 

Concrete unit weight 23.5 kN/m3 

Edge thickness 0.5 m Backfill unit weight 17.5 kN/m3 

Middle thickness 1.7 m Modulus of subgrade reaction Soft: 25 MN/m3 

Medium: 80 MN/m3 

Hard: 250 MN/m3 

Pedestal height 1.0 m Elasticity modulus (concrete) 28.3 GPa 

Foundation depth 2.5 m Poisson’s ratio (concrete) 0.17 

 

 

Base pressure is an important design parameter as it is used to verify soil bearing capacity, 

to perform concrete design and to estimate tilt and settlement. For this reason, base pressure is 

evaluated at eight load steps. Table 2.4 lists the eight load steps and the practical motivation of 

their selection. 

2.9.1 Contact Pressure Changes under Increasing Load 

The contours shown on Figure 2.17 and Figure 2.18 correspond to increasing levels of 

overturning moment with the first step limited to self-weight of the footing, the soil backfill and 

the turbine dead load and the last step corresponding to the factored design moment. As can be 

seen from these series of plots, the foundation starts off by being under concentric pressure 

contours. The contours then shift under the effect of the increasing overturning moment. Similar 

pressure contour patterns are noted for circular and octagonal foundations.  
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Table 2.4 Load steps considered in the finite element analyses 

Step Description and significance 

DL   Dead loads: self-weight of WTG, backfill and concrete. Contact pressure at 

the footing/subgrade interface is a baseline pressure in the absence of other 

operational loads. 

0.2DL LL   An intermediate low-pressure step with no special significance. LL  

represents the unfactored (characteristic) extreme loading case. 

0.4DL LL   SLS load levels typically range between 0.4 to 0.8 the extreme loading 

0.6DL LL   SLS load levels typically range between 0.4 to 0.8 the extreme loading 

0.8DL LL   SLS load levels typically range between 0.4 to 0.8 the extreme loading 

1.0DL LL   This level is of special interest at it represents the characteristic extreme 

loading 

1.1DL LL   Typical PLF for ULS checks 

1.35DL LL   Typical PLF for ULS checks 

Note: For the example problem described in this section, the loads are: 

 WTG self-weight: 2275 kN 

 LL Moment: 51600 kNm 

 LL horizontal load: 660 kN 

 

2.9.2 Contact Pressure under Varying Subgrade Stiffness 

Contours shown on Figure 2.19 illustrate the response for foundations that are identical 

except for the modulus of subgrade reaction. Three modulus values investigated:  

1. A value representative of a “soft” subgrade such as soft and firm clays: 25 MN/m3 

2. A value representative of a “medium” subgrade such as sands and stiff to hard 

clays: 80 MN/m3 

3. A value representative of a “hard” subgrade such as cemented soils and rock of 

varying quality: 250 MN/m3 
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The contours highlight the significant impact of footing/soil relative rigidity, whereby a 

footing supported on soft soils behaves as a rigid footing and one supported on rock behaves as a 

flexible foundation. In general, rigid footings (footings over softer subgrades) tend to have the 

maximum base pressure at the edge, while flexible footings (or footings over hard subgrades) have 

the highest pressure away from the edge.  However, in terms of magnitude, with all other 

parameters being equal, the maximum base pressure tends to be lower for footings resting on softer 

subgrade. In the example, as shown in Figure 2.19, maximum base pressure for the “soft subgrade” 

case is about 30% lower than that for the “hard subgrade” case. 
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Figure 2.17 Contact pressure under circular foundation 
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Figure 2.18 Contact pressure under octagonal foundation 
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Figure 2.19 Contact pressure for different subgrade stiffness at 1.35DL LL  
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CHAPTER 3   

CHARACTERIZATION OF GEOTECHNICAL UNCERTAINTY 

Uncertainty is present in all kinds of environments, processes and phenomena. It is 

accepted that there is always some level of uncertainty in engineering practice. However, 

uncertainty is particularly more pervasive in geotechnical engineering. The deterministic 

computations described in Chapter 2 use representative values of geotechnical properties that are 

known to be uncertain. This chapter discusses the sources of uncertainty in such parameters, 

techniques to characterize their variability for a given project, different probability density 

functions used to model these parameters as random variables, and published literature on their 

typical ranges of variability. These topics are critical to the proper implementation of reliability-

based design methods discussed in subsequent chapters.  Understanding and assessing 

geotechnical design uncertainty is essential to proper use of reliability-based design methods and 

producing designs with quantifiable levels of reliability. 

3.1 Geotechnical Uncertainty 

Geotechnical design involves many uncertain sources. Uncertainties exist in the applied 

loads as well as in all the geotechnical parameters used to compute geotechnical resistance. 

Geotechnical materials are also heterogenous and design parameters are generally variable in 

space, even though natural processes such as tectonics, geology, erosion and deposition are 

governed by physical laws which can be understood, and which tend to render some level of 

predictability at differing scales. Uncertainties exist even in the historical data upon which event 

recurrence statistics and trends in natural phenomena are based, e.g., the effects of climate change, 

even though such uncertainties are rarely considered in design practice.   
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Many authors have written to describe different types and sources of uncertainty. The 

wealth of literature and the associated broad taxonomy resulted in much confusion on the types 

and sources of uncertainty and on whether some of these types need to be explicitly accounted for 

in design methods or have already been accounted for as part of the design process. One way to 

categorize uncertainties is to group them into three sources: inherent soil variability, uncertainties 

due to measurements and uncertainties due to transformation models, Figure 3.1. Many authors 

have also found it convenient to categorize uncertainty into two types: Type 1 - aleatory 

uncertainty arising from the natural variability and Type 2 - epistemic uncertainty arising from 

insufficient knowledge, Figure 3.2 (e.g. Apostolakis, 1990; Ferson & Ginzburg, 1996; Phoon & 

Kulhawy, 1999a; Whitman, 2000; Baecher & Christian, 2003). Since natural processes are 

governed by physical laws, it can be argued that all uncertainty is epistemic; i.e., caused by lack 

of understanding/knowledge of the physical laws and the settings upon which these laws act. 

Nevertheless, such categorizations are useful because they break up uncertainty sources (the 

known unknowns) into a few primary areas of focus. It should be mentioned that uncertainty 

modeling does not typically include gross or human errors since these are considered as deviations 

from established processes and are normally reduced via quality control measures. In this section, 

the common types of uncertainties identified in the literature are discussed in more detail.  

3.1.1 Aleatory Uncertainty 

Aleatory uncertainties represent sources that are naturally random and out of the designer's 

control; i.e., they cannot be reduced through more knowledge or data. A commonly accepted 

understanding of aleatory uncertainty is that it has an inherent as well as a spatial component. 

Several sources of aleatory uncertainty are described below with comments on how they relate to 

wind energy projects. 
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Figure 3.1 Uncertainty in soil property estimates (Kulhawy, 1996) 

 

 

 

Figure 3.2 Sources of geotechnical design uncertainty 
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3.1.1.1 Inherent Variability 

Inherent soil variability is related to natural randomness and does not include the influence 

of physical trends (e.g., shear strength or density increases with depth), predictable mixing of soils 

from different geologic units, or measurement errors. Inherent soil variability is present between 

any two points, no matter how close they are to each other or whether they belong to similar or the 

same soil layer. 

3.1.1.2 Spatial Variability 

Another source of uncertainty is due to spatial variability extending vertically and 

horizontally within influence distances from the foundation. An efficient method of modeling 

spatial variability is through random field theory, typically implemented using the Random Finite 

Element Method (RFEM) (e.g. Griffiths et al., 2006; Griffiths et al., 2013). In this theory, an 

important parameter used to quantify spatial variability is the spatial correlation length which is 

loosely defined as the distance within which the values of a given parameter are significantly 

correlated (Fenton & Griffiths, 2008). The larger the spatial correlation length, the more uniform 

is the random field and the lower is the rate of spatial variation. The reverse is also true: the smaller 

the spatial correlation length, the “choppier” is the field.  Soil deposits are found typically in 

horizontal or near horizontal layers; therefore, spatial variability is anisotropic, and the spatial 

correlation length is generally larger in the horizontal direction than it is in the vertical direction. 

Based on a literature review, Huber (2013) provided a useful compilation of typical values of 

spatial correlation length for different soils. 

3.1.1.3 Random Errors 

Random or data scatter errors include those due to measurement errors from equipment, 

procedural, operator and random test effects.  
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3.1.2 Epistemic Uncertainty 

Epistemic uncertainty represents sources that can be reduced through, among other things, 

better quality measurements (more accurate instruments), more data collection and improved 

procedures (better models). 

3.1.2.1 Measurement Uncertainty 

Measurement uncertainty is related to the equipment being used (tolerances and 

calibration), in-situ or laboratory test procedures, operator errors, and random scatter in the 

measured data. Naturally, measurement error is different for different test procedures. Reported 

measurement error data have been summarized for various laboratory and field tests by various 

investigators (e.g. Phoon & Kulhawy, 1999b).  It is worthwhile to note that the highest variability 

attributed to in-situ test measurement error is that corresponding to the Standard Penetration Test 

(SPT).  The error introduced by sample size is sometimes considered as a measurement error.  

3.1.2.2 Statistical Uncertainty 

Statistical uncertainty is associated with insufficient data being collected or insufficient 

sample size. Normally, the greater the number of data points or sample size, the smaller the error. 

However, beyond a rather low number of samples, it is more important to capture the full range of 

variability than to obtain more data points. For this reason, the effort to capture the full range of 

variability as early as possible in the life of a project is very important to the early assessment of 

risks. There are numerous simplified rules of thumb to estimate standard deviation and variability 

based on the range and number of samples (Tippett, 1925; Whitman, 2000; Foye et al., 2006). 
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3.1.2.3 Model Uncertainty 

In the literature, model uncertainty is described as that which is associated with the choice 

of the idealizations, assumptions, computational models as well as transformations performed on 

measured data to obtain design parameters. This uncertainty is meant to reflect current imperfect 

knowledge of the “real” behaviors or processes. This logic assumes that there is an “absolute truth” 

which we need to measure things against. A computational model is supposed to be the best 

available for a specific situation or application short of an absolute truth. Absolute truth will always 

remain as unknown or not completely understood. Thus, it is difficult to conceive of a way to 

measure progress towards an absolute truth or an end goal when that end goal is not completely 

understood. Furthermore, engineering design has long been performed per the state-of-the-art in 

human modeling of natural physical phenomena. When better models are developed, their merits 

are verified and then they are adopted; it does not seem rational to invoke this uncertainly only 

when reliability-based design is concerned. 

Appendix D of ISO-2394 defines model uncertainty as that “emanating from imperfections 

of analytical models for predicting engineering behavior” (ISO, 2015). This ISO standard 

characterizes model uncertainty through a model factor applicable to each specific set of conditions 

which include failure mode, calculation models and local conditions. Furthermore, there are 

typically many geotechnical calculation models in a single design problem. For these reasons, this 

ISO standard anticipates a proliferation of model factors.  The model factor is defined as the ratio 

of measured performance to predicted performance. However, it is not clear how such a ratio can 

be linked to calculation models or to a specific calculation model.   
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3.2 Geotechnical Uncertainly and Wind Energy Projects 

Wind energy projects differ from most traditional projects in that they cover large terrains. 

Wind turbines are typically placed 5 to 10 rotor diameters apart to optimize energy extraction 

(Denholm et al., 2009). Nowadays, common rotor diameter for utility-scale wind turbine 

generators is around 130 meters, signifying turbine typical spacing of 0.6 to 1.3 kilometers just for 

energy extraction efficiency.  Therefore, wind turbines are too far apart to consider possible 

relationships or correlations between ground conditions from one turbine location to another. This 

is separate from regional or larger scale characteristics which may be applicable to the project area 

or portions of it, such as those related to different geologic settings or terrains. 

Engineering design practice, including that within the wind energy industry, considers 

single representative value of geotechnical properties to represent an entire soil mass or a soil 

layer. With exploratory borings drilled in the vertical direction, focus is limited to variations in the 

vertical direction because a geotechnical exploration rarely goes beyond one boring at the center 

of the foundation unless there is strong reason to believe conditions are non-uniform. Knowledge 

of the vertical spatial variation is often limited to the line of the boring. On the other hand, 

knowledge in the horizontal direction is limited to observations of outcrops and the exposed 

foundation bearing surface. In general, this is very limited information but is standard industry 

practice. This is also why at least two forms of exploration should be carried out at each turbine 

location: a traditional boring and a geophysical survey such as Multi-channel Analysis of Surface 

Waves (MASW) survey. 

3.3 Probabilistic Approaches to Uncertainty 

As discussed in the previous section, geotechnical properties are uncertain; and the 

uncertainty could be attributed to many sources. Two schools of thought exist in the understanding 
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of probabilities associated with uncertain properties or variables: 1) a frequentist approach based 

on dry statistics and 2) a Bayesian approach based on “degree of belief.” 

The classical frequentist definition of probability is that which has been taught in 

engineering curricula and is based on dry, un-nuanced statistics. For example, if an experiment can 

yield a total number of equally likely outcomes, totaln , among which there are An  equally likely 

outcomes of type A, then the probability of getting an outcome of type A is: 

   A

total

nP A
n

   (3.1) 

The above definition of probability is useful in experiments that can be repeated with great 

fidelity and in large numbers; i.e., in production settings where thousands of “identical items” are 

manufactured following the same process. This setting is hardly relevant to civil engineering 

design where structures that are often unique are built on unique geotechnical conditions and are 

subjected to site specific environmental loads. 

The Bayesian definition of probability is based on “degree of belief” and the probability of 

Event A,  P A , is simply the degree of belief that Event A will occur. By definition, degree of 

belief is subjective. For the experiment example above, even when there are some statistics that 

indicate that the probability of event A could be A

total

n
n , the person providing the probability of 

Event A may give a different estimate based on his/her degree of belief which could be emanating 

from prior and/or personal experience, observations of other events, etc. Bayesian probability is 

also described as prior probability because a degree of belief has to be assumed prior to obtaining 

any new information or estimates of probability. The new information serves to update the prior 
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probability estimate or the degree of belief. Updating of the prior probability; i.e., obtaining the 

posterior, can be formulated using the conditional probability and the total probability theorems. 

The conditional probability theorem expresses the probability of an Event A given an Event 

B has occurred,  |P A B  as: 

    
 

|
P A B

P A B
P B


   (3.2) 

In the above equation,  P A B  is the probability of both Events A and B occurring; i.e., the joint 

probability of Events A and B, and  P B  is the probability of Event B. Since joint probability 

operation is commutative; i.e.,    P A B P B A   , the following equivalency is obtained: 

        | |P A B P B P B A P A   (3.3)  

 The total probability theorem gives the probability of Event A,  P A , in terms of prior 

probabilities of other events iE  for all events i n  in events space  : 

      
1

|
n

i i
i

P A P A E P E


   (3.4) 

Equation (3.3) can be written for Events A and iE  as: 

        | |i i iP A E P E P E A P A   (3.5) 

Therefore: 

      
 

|
| i i

i

P A E P E
P E A

P A
   (3.6) 
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Substituting  P A  with the expression from the total probability theorem; i.e., Equation (3.4), we 

obtain Bayes’ rule which gives the posterior probability of Events iE  as: 

      

   
1

|
|

|

i i
i n

j j
j

P A E P E
P E A

P A E P E





  (3.7) 

In Equation (3.7),  | iP A E  is called the likelihood and can be described as the probability of 

obtaining a certain Event A given the observation of Event iE  and  iP E  are the prior 

probabilities of Events iE . Bayes’ rule provides a theoretically rigorous format for dealing with 

design situations where knowledge is limited or comes from different streams. Such situations fit 

the usual design setting in civil, and particularly geotechnical, design practice. The approach is 

probabilistic where statistics plays an important role. However, the format provides a mechanism 

for dealing with uncertainty through accumulation of knowledge and a learning loop for 

continuous improvement and reduction of uncertainty.   

3.4 Modeling the Distribution of Random Variables 

Modeling distributions of random variables is achieved through probability density 

functions. A probability density function (PDF) of a random variable X  is a function, ( )Xf x , 

which gives the likelihood of the random variable X  taking on the value of x. The sum of the 

likelihoods of all possible values of X is equal to one. Therefore, the area under the PDF curve is 

equal to one: 

 ( ) 1.0Xf x dx



   (3.8) 
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The cumulative distribution function (CDF), ( )XF x , is the area under the PDF from the 

lower bound of the domain of X  to x, and is also expressed as the probability the random variable 

X  takes on a value less than x; i.e.  P X x  : 

  ( ) ( )
x

X XF x f x dx P X x


     (3.9) 

Usually, there is only a limited set of data points, but theoretically, the variable could take 

on any value between the data points if more measurements are taken. Thus, random variables are 

suitably modeled using continuous PDF’s. There are many continuous PDF’s to choose from to 

represent random variables, each with its advantages and disadvantages for different applications 

(e.g. Fenton & Griffiths, 2008). This section describes three PDF’s selected for the work in this 

dissertation and discusses their distinctive features: normal, lognormal and bounded tanhPDF’s. 

3.4.1 Normal Distribution 

The symmetric, bell-shaped normal (Gaussian) distribution, Figure 3.3, is widely used in 

statistical fields and is a basic assumption of the great majority of statistical research to date. One 

reason for its prominence is that many random variables can be adequately represented through 

this shape. Another reason is that even if the PDF of a single random variable is not symmetric, 

the combined effect of many variables with non-symmetric distributions tends to drift back to the 

symmetric bell-shaped curve.  This fact can be demonstrated through the central limit theorem 

(e.g. Fenton & Griffiths, 2008). The normal probability density function of a random variable X  

with mean X  and variance of 2
X , denoted as 2( , )X XX N   , is expressed as: 

 

2
1
21( ) for

2

X

X

x

X
X

f x e x




 

 
 
        (3.10) 
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There is no closed form solution to the integral of the normal probability density function 

above. Therefore, the normal cumulative density function (CDF) is obtained through numerical 

integration. The PDF and CDF of a random variable X  with mean 5X   and standard deviation 

2X  ; i.e., (5, 4)X N , are shown in Figure 3.3. While the normal PDF is a common choice for 

many naturally occurring random variables. it inevitably includes the possibility of predicting 

negative numbers that may be physically meaningless. This presents a difficulty for many 

engineering properties where a negative value has no physical significance. Examples of such 

properties include cohesion, friction angle, compressibility, permeability, etc. 

One special normal PDF with a mean of zero ( 0)   and variance of one 2( 1)   is called 

the standard normal PDF, (0,1)Z N , Figure 3.4. The PDF of the standard normal distribution is 

expressed as: 

 
21

21( ) for
2

z
z e z


       (3.11) 

and the standard normal CDF is denoted as: 

 ( ) ( )
z

z z dz


     (3.12) 

Any normally distributed variable, 2( , )X XX N   , can be standardized; i.e., turned into 

the standard normal distribution, (0,1)Z N , by subtracting the mean from its variate and 

dividing the result by the standard deviation: 

 X

X

xz 



   (3.13) 
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Figure 3.3 Normally distributed variable (5, 4)X N  PDF and CDF 

 

 

 

Figure 3.4 Standard normal (0,1)Z N  PDF and CDF 
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The shifting and scaling back and forth between a normal PDF and a standard normal PDF 

are illustrated in Figure 3.5 which shows the PDF for a normally distributed random variable 

(5, 4)X N , as well as the PDF of the standard normal PDF, (0,1)Z N . This shifting and scaling 

is used to calculate the probabilities of any normally distributed random variable, [ ]P X x , by 

converting the normal variate into a standard normal variate and consulting published tables for 

the standard normal CDF, ( )z : 

 [ ] X X X X

X X X X

X x x xP X x P P Z   
   

        
           

     
  (3.14) 

The standard normal PDF is also useful in calculating the probability for non-standard 

PDF’s and is used extensively in random variable generation for simulation purposes. In the case 

of a normal PDF, 2( , )X XX N   , the standard normal PDF value is generated randomly in the 

standard normal space and then scaled and shifted back to the original normal PDF using this 

equation: 

 X XX Z     (3.15) 

3.4.2 Lognormal Distribution 

A random variable  X  is said to be lognormally distributed with mean X  and variance 2
X  ; i.e., 

2( , )X XX LN   , if the logarithm of X  is normally distributed, i.e., 2
ln lnln( ) ( , )X XX N   , 

Figure 3.6. In this sense, a lognormal PDF is an exponential transformation of a normal PDF and 

the normal PDF being transformed is called the underlying normal PDF: 

 

2
ln

ln

ln( )1
2

ln

1( ) for 0
2

X

X

x

X
X

f x e x
x




 

 
  

       (3.16) 
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Figure 3.5 Scaling and shifting of normal PDF’s 

 

In the above equation, the mean and standard deviation of the lognormal PDF are related to the 

mean and standard deviation of the underlying normal PDF as follows: 

  
2

2
ln ln ln2

1ln 1 and ln
2

X
X X X X

X

   


 
    

 
  (3.17) 

A noteworthy characteristic of the lognormal PDF is that it is positively skewed whereby 

its right tail is longer than its left one, and both its mode and median are to the left of the mean. 

Another useful feature of the lognormal PDF is that it is always positive; hence, it does not produce 

meaningless negative values for many engineering design parameters such as elasticity moduli, 

shear strength parameters, shear wave velocity, etc. Therefore, the lognormal PDF is a popular 

substitute for the normal PDF. Furthermore, there is field data to support that many geotechnical 

parameters approximately follow lognormal distributions (Jones et al., 2002). The two-parameter 
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lognormal distribution discussed here is a special case of the general three-parameter lognormal 

distribution where the third parameter is a skewness parameter and is equal to zero (Holicky, 

2009). The general three-parameter formulation may be useful if there is a lower, non-zero bound 

for the geotechnical property being modeled. 

 

Figure 3.6 Lognormal PDF and CDF 

 

3.4.3 Bounded tanh Distribution 

The bounded tanh PDF, 2( , , , , )X XX BT a b m  , results in a distribution that is bounded 

by two variate values a and b: 

  
  

2

2
1 ln

2( )
2

x a m
b xs

X

b a
f x e

s x a b x

        



 

  (3.18) 
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where s and m  are scale and location parameters, respectively. The bounded tanh PDF is a 

transformation of the standard normal PDF, (0,1)G N , obtained as follows: 

  1 1 tanh
2 2

m sGX a b a


           
  (3.19) 

in which the tanh function is defined as: 

 tanh( )
z z

z z

e ez
e e









  (3.20) 

The location parameter m  is equal to zero for symmetrical bounded tanh PDF’s. The scale 

parameter s is a measure of variability. Fenton & Griffiths (2008) used a third-order Taylor series 

expansion for tanh and a first-order approximation for the expectation to express the scale 

parameter s in terms of the standard deviation of the underlying normal distribution. They also 

applied an empirical correction and suggested the following approximation of the scale parameter: 

 
 22 2

2

0.46
X

X

s
b a






 
  (3.21) 

Figure 3.7 shows the PDF and CDF of a bounded tanh variable (5, 4, 0,10, 0)X BT . In 

this example, the mean value is 5X  , the variance is 2 4X  , the lower bound is 0a  , the 

upper bound is 10b  and location parameter is 0m  (symmetric). As can be seen in this figure, 

the bounded tanh PDF would be attractive for parameters with known physical or practical bounds 

such as those listed in Table 3.1. 

Even though a symmetric PDF is often adequate for geotechnical parameters, non-

symmetric distributions can also be modeled by the bounded tanh PDF by adjusting the location 
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parameter, m . This parameter is equal to zero for a symmetrical PDF’s, positive when the peak is 

to the right of the mean, and negative when the peak is to the left of mean, Figure 3.8. 

 

Table 3.1 Example geotechnical properties with known physical bounds 

Geotechnical Property Physical Bounds 

Elastic moduli, shear wave velocity, undrained shear strength, etc.. 0   

Theoretical limits on angle of internal friction 0 to 90 degrees 

Practical limits on angle of internal friction 0 to 45 degrees 

Porosity, degree of saturation, relative density 0 to 1 

Poisson’s ratio of common materials 0 to 0.5 

Poisson’s ratio for isotropic linear elasticity (Mott & Roland, 2013) 0.2 to 0.5 

 

 

Figure 3.7 Bounded tanh PDF and CDF 
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Figure 3.8 Location parameter of bounded tanh distributions 

 

3.4.4 Uniform Distribution 

The uniform distribution ( , )X U a b  is a noninformative distribution where the random 

variable X  is equally likely to take on any value between a lower bound a and an upper bound b

. Thus, its PDF and CDF are as follows: 

 

1 for

( )
0 otherwise

a x b
b a

f x

   
 




  (3.22) 
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  

0 for

( ) for

1 for

x a

x aF x P X x a x b
b a

x b




 

     

 

  (3.23) 

One particular uniform distribution is (0,1)U  which generates random numbers between 

0 and 1. This particular distribution is useful for randomly selecting an element from a set without 

preference or bias.   

3.4.5 Measures of Central Tendency and Variability 

The two most important parameters defining the central tendency and variability of a 

random variable, X , are the mean, X , (a measure of central tendency) and the variance, 2
X , (a 

measure of variability), Figure 3.9. The square root of the variance is the standard deviation and is 

usually used as a measure of variability because it has the same units as the random variable. 

Another useful measure of variability is the standard deviation divided by the mean, or coefficient 

of variation (COV). The COV is an attractive variability measure because it is dimensionless and, 

therefore, scale independent as it is normalized with the respect to the mean. The COV is often 

expressed as a percent (of the mean). As can be noted from Figure 3.9, the spread of the PDF curve 

is narrower for smaller COV’s; i.e., for random variables with lower variability; and vice versa.  

3.4.6 Selection of Material Property PDF’s 

For use in RBD methods, Fenton & Griffiths (2008) detail a logical process for distribution 

selection given a data set, starting with fitting several reasonable probability density functions to 

the data and then comparing the goodness of fit to select the best distribution. The normal 
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distribution is very popular in statistics and could be a good fit for many geotechnical design 

variables, Table 3.2. However, unless the mean value of the normal distribution is far from zero 

and its variance is low, this distribution would inevitably predict negative values which would be 

physically meaningless for many geotechnical properties. There are also geotechnical parameters 

that are bounded at the low and high ends. In these cases, good alternate distributions to the normal 

distribution are the lognormal and the bounded (tanh) distributions. 

 

 

Figure 3.9 Lognormal PDF's for various COV’s 

 

Another consideration to keep in mind in selecting the distribution is the number of 

parameters required in its definition. Many basic (but adequate) distributions of a random variable, 

X , require only two parameters: its mean, X and its standard deviation, X . Bounded 
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distributions would also need the two bounds but those can be obvious and intuitive physical or 

practical limits such as the limits on Poisson’s ratio or friction angle, Table 3.1.  Therefore, the 

specification of these bounds can be an added benefit of such distributions. All analyses performed 

as part of this dissertation are limited to the normal, lognormal and bounded tanh distributions. 

The selection of the probability model can be challenging when only limited data is available. In 

this case, a starting choice would be to refer to recommendations in the literature such as those 

shown in Table 3.2. Zhang et al. (2014) also describe a selection procedure based on copula theory 

and Bayesian updating. 

 

Table 3.2 A few parameter distributions recommended in literature 

Soil Type Parameter Distribution(s) Reference(s) 

All soil types Submerged unit weight NR 3 

Void ratio, initial void ratio and porosity NR 3 

Shear wave velocity LN 2 

Sands Friction angle NR 3, 1 

Clays Initial void ratio NR 3 

Liquid limit NR 3 

Over-consolidation ratio NR/LN 3 

Plastic limit NR 3 

Undrained shear strength LN 3 

Clayey silts Undrained shear strength NR 3 

References: 

1. Wolff et al. (1996) 

2. Toro (1996) 

3. Lacasse & Nadim (1997) 

Notes: 

 NR: Normal 

 LN: Lognormal 



87 
 

3.4.7 PDF’s for Loads 

Loads are often variable in time. What is important in modeling variability in loads is not 

the instantaneous values of the load but the extreme values that occur during a predefined reference 

period. The extreme values are modeled as random variables with specified PDF and PDF 

parameters. Example suitable PDF’s for wind turbine loads are the Weibull and Gumbel 

distributions used for DLC 1.1 and DLC 6.1, respectively (Sorensen & Toft, 2014). DLC 1.1 is a 

power production load case corresponding to annual maximum load effect obtained by load 

extrapolation has a COV of 15%, while DLC 6.1 load case corresponds to parked (standing still 

or idling) condition and has a 50-year recurrence period and a COV of 20%, (IEC, 2008; Sorensen 

& Toft, 2014). Even though the Weibull and Gumbel PDF’s were used to model the distributions 

of the above load cases for the purposes of partial factor calibration in IEC61400-1, this 

dissertation uses the lognormal distribution for both load cases and for all limit states considered 

in these analyses. This choice is made because the objective is not calibration of partial factors but 

the illustration of the d-RBD methodology. Furthermore, Sorensen & Toft (2014) found that the 

use of a normal or lognormal PDF for the loads caused negligible changes in the partial factors.   

3.5 Cross-correlations of Random Variables 

Geotechnical design parameters may occasionally be cross-correlated, and it is important to 

consider such cross-correlations and to understand how they impact design reliability. The impact 

can be positive or negative depending on the situation. Not only may geotechnical parameters be 

cross-correlated, they may also be correlated to the applied load as implied by Coulomb’s equation 

in which shear strength (resistance) is a function of applied stress (load). 
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3.5.1 Covariance and Correlation Matrices 

The relationship between two random variables X  and Y  can be described using joint 

moments. Covariance of X  and Y  measures the interdependence of these two random variables 

and is defined as: 

       cov , X Y X YX Y E X Y E XY            (3.24) 

In the above equation, E  for a random variable X  is  E X  and is the expected value, or mean, 

of X : 

   ( )XE X xf x dx



     (3.25) 

When  cov , 0X Y  , the two random variables X  and Y  are statistically independent. 

When the covariance is negative, the two random variables are said to be negatively correlated 

which means that when of the variables increases, the other also decreases, and vice versa. When 

the covariance is positive, the two variables are positively correlated and they both tend to increase 

or decrease together. When there are n random variables 1,..i nX  , the covariances between the 

random variables is conveniently expressed as a covariance matrix: 
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21 22 2

1 2
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n n nn

c c c
c c c

c c c

 
 
 
 
 
 

C   (3.26) 

where   cov ,ij i jc X X  and   2cov ,ii i i ic X X   . 
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 Covariances are normalized with respect to variances to obtain dimensionless coefficients 

for correlation varying from -1 to 1: 

 
 cov ,

for and 1 fori j
ij ii jj

i j

X X
i j i j  

 
       (3.27) 

and a correlation matrix is obtained as: 
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12 2
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1 ..
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.. 1

n

n

n n

 
 

 

 
 
 
 
 
 

ρ   (3.28) 

Correlation coefficients measure the strength of association between random variables. The 

diagonal terms of the correlation matrix measure the association of a random variable with itself. 

A random variable is perfectly associated with itself; thus, the diagonals are all equal to 1. For the 

off-diagonal terms, if the term is positive, the variables are positively correlated and vice versa. 

The closer the coefficient is to 1, the stronger the positive association; and the closer the coefficient 

is to -1, the stronger is the negative association. Finally, the correlation matrix is symmetric; i.e., 

if X  is negatively correlated with Y , then Y  is also negatively correlated with X  and by the 

same strength of association. 

3.5.2 Typical Correlations of Geotechnical Properties 

One of the widely debated association between geotechnical properties is the correlation of 

the two components of shear strength; i.e., friction and cohesion. Most published information 

points to a negative correlation between effective friction angle and effective cohesion of a c    

soil. Several reported negative correlations are shown in Table 3.3.  Greco (2016) provides a much 

more extensive literature review on this issue and included the mention of a few researchers 
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reporting positive correlations. Fenton & Griffiths (2003) commented on the lack of consensus on 

this issue and investigated the implications of extreme cases of negative and positive correlation 

between cohesion and friction for bearing capacity of a shallow foundation on random soil. Fenton 

& Griffiths (2003) found that the impact was minimal. The reason could be that the assumption of 

negative correlation between friction and cohesion leads to two counteracting tendencies: on one 

hand, it leads to a reduction of shear strength (negative impact) and on the other, it leads to a 

reduction in the shear strength variance (positive impact).  In general, it is acceptable to treat 

effective friction and cohesion as independent properties. For other geotechnical parameters, 

Uzielli et al. (2006) summarize many other reported correlations, many of which have clear and 

undisputed correlations. 

 

Table 3.3 Published correlations between effective friction and effective cohesion 

Reference Coefficient of Correlation Range 

Yucemen et al. (1973) 0.49 0.24     

Lumb (1970) 0.70 0.37     

Cherubini (1997) 0.61    

Uzielli et al. (2006) 0.75 0.25     

 

 

3.6 Design Parameters Based on Limited Information 

Geotechnical investigations, even when they may be deemed exhaustive, will certainly not 

provide a full characterization of a project site. The reality is that geotechnical investigations are 

limited in scope for most civil engineering projects, and they are particularly so for wind energy 

projects which cover large terrains. Fortunately, what is important in reliability-based design is not 
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an exact value of a design parameter, but the uncertainty associated with it. Therefore, the objective 

of geotechnical explorations and data collection from various sources should be to establish the 

bounds on the variability of design parameters; i.e., to assess their uncertainties. Such assessment 

should be the focus of geotechnical explorations even when they are deemed exhaustive. 

Uncertainty assessment is beneficial whether it results in lower or higher variability because the 

resulting design would be reflective of the better knowledge of the uncertainties. There are many 

strategies for conducting effective geotechnical investigations with the aim of identifying 

geotechnical hazards and optimizing the often-limited resources dedicated to investigations (e.g. 

Barnes, 1993; Halim & Tang, 1993; Zhang et al., 2004; Jaksa et al., 2005; Goldsworthy et al., 

2007; Ben-Hassine & Griffiths, 2013). This section contains a brief description of some cost-

effective techniques that are useful in assessing uncertainty and establishing reasonable bounds on 

parameter variability, as well as developing a feel for site variability. 

3.6.1 Geophysical Methods 

Geophysical methods used in geotechnical site characterization are primarily of three types: 

methods based on analysis of surface waves such as Spectral Analysis of Surface Waves (SASW) 

and Multichannel Analysis of Surface Waves (MASW) (e.g. Xia et al., 1999; Stokoe & 

Santamarina, 2000; Nazarian, 2012; Taipodia et al., 2013; Hutchinson & Beird, 2016b), methods 

based on analysis of cross-hole or down-hole waves such as the Seismic Cone Penetrometer Test 

(SCPT) (Stokoe & Woods, 1972; Stokoe & Hoar, 1981; Robertson et al., 1986) and refraction 

micrometer (ReMi) arrays (Louie, 2001). MASW is a more accurate extension of Spectral Analysis 

of Surface Waves (SASW) as it achieves higher resolution and higher consistency and repeatability 

through the use of multiple data channels to isolate noise (Park et al., 1999).  
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Geophysical methods have found success in site characterization due to several key 

advantages: 

i) They are cost-effective typically adding only a small fee to the cost of a geotechnical 

exploration, 

ii) They are non-intrusive: MASW is completely non-intrusive and SCPT does not 

require a probe beyond the CPT probe. 

iii) They are considered to be the best methods for measuring undisturbed, zero strain 

shear modulus,  

iv) Their accuracy is acceptable with MASW highly ranked in terms of cost and overall 

utility (Anderson et al., 2006);  

v) They characterize near surface geomaterials delivering profiles showing variation of 

shear and compression wave velocities with depth; 1D profiles can be combined to 

create a 3D model of local soil stratigraphy (Hutchinson & Beird, 2016a). 

vi) Shear and compression wave profiles can be converted to profiles of geotechnical 

parameters based on elasticity formulas; see Table 3.4 for the key formulas for linear 

elastic, isotropic materials. 

vii) They provide additional insights such as depth to bedrock, potentially detecting 

anomalies, etc. 

Because of the above advantages, geophysical surveys, particularly the MASW technique, 

are a logical undertaking when geotechnical data is limited such as during the preliminary 

phase of projects.  
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Table 3.4 Key geophysical formulas for isotropic materials 

Parameter Formula Measured/Computed/Notes 

Compression wave 

velocity, pV   

4
3

p

K G
V




   

Measured. 

For granite, 4.8 secp
kmV    

For water, 1.5 secp
kmV   

Shear wave velocity, sV   
s

GV


   
Measured. 

For granite, 3.0 secs
kmV    

For water, 0 secs
kmV   

Shear modulus, G   2
sG V   Computed zero-strain modulus. 

Young’s modulus, E    22 1sE V     Computed zero-strain modulus. 

Bulk modulus, K   2 24
3p sK V V    

 
  

Computed zero-strain modulus. 

Poisson’s ratio,   2 2

2 2

1
2 p s

p s

V V

V V






  

Computed zero-strain Poisson’s ratio. 

  

3.6.2 N-Sigma Procedure 

The “N-sigma” procedure is an extension to the “Six-sigma” rule (also called the “Three-sigma 

rule”) which suggests that the standard deviation of a normally distributed random variable can be 

approximated as the estimated range of the variable; i.e., the difference between the highest and 

lowest conceivable variable values, divided by six (Dai & Wang, 1992; Duncan, 2000): 

 
6

X
X

Range    (3.29) 
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This suggestion is based on the fact that 99.74% of the area under the normal PDF is contained 

within 3 X .   For the common case where there is a small number of data points, judgment is 

crucial in estimating the range of the variable. Thus, the accuracy of the six-sigma procedure is 

dependent on the judgment in estimating the range and the strong likelihood that the available data 

do not cover the range of the variable. The N-sigma procedure is conceived to account for this 

deficiency (Duncan, 2000; Foye et al., 2006): 

 X
X

Range
N

    (3.30) 

  In the equation above, N  is typically less than 6. Tippett (1925) suggested a relationship 

between N  and the number of available data points, n, for a normally distributed variable. Based 

on tabulated data for this relationship attributed to Tippett (1925) and republished by Foye et al. 

(2006), a logarithmic regression on this relationship, with 2 0.9867R  yields the following 

relationship, Figure 3.10: 

 0.7991ln( ) 1.161N n     (3.31) 

It should be noted that this method is equivalent to shortcut estimates of the standard 

deviation as the range of the available data points multiplied by a coefficient that is a function of 

number of samples (Snedecor & Cochran, 1964; Krumbein & Grayhill, 1965).  
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Figure 3.10 N  as a function of number of data samples, n (Tippett, 1925) 

 

3.6.3 Multivariate Correlations and Bayesian Updating 

Bayesian updating or learning is a formal expression of an activity that geotechnical 

engineers do all the time without attaching Bayes’ name to it: they make inferences based on 

observations (Baecher, 2017). For example, the approach is recognized, without a formal 

expression of how it can be accomplished, by the Eurocode in the determination of characteristic 

values of geotechnical parameters (CEN, 2004): 

“If statistical methods are employed in the selection of characteristic values 

for ground properties, such methods should differentiate between local and 

regional sampling and should allow the use of a priori knowledge of comparable 

ground properties.” 
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The formal expression of this approach is widely documented in the literature and is based 

on Bayes’ conditional probability rule where new information is used to update “prior” information 

to “posterior” information (e.g. Denver & Ovesen, 1994; Cao et al., 2016; Wang et al., 2016; 

Papaioannou & Straub, 2017; Zhang, 2017; Li et al., 2018; Zhang et al., 2018). “Bayesian 

thinking” represents a shift from the “frequentist” methods of statistics covered in formal 

engineering education (Lumb, 1974; Zhang, 2017). Zhang et al. (2004) describe Bayesian updating 

procedures for reducing uncertainty based on empirical correlations, regional data and site-specific 

observations and propose three levels of uncertainty reduction depending on the available data, 

Figure 3.11. Zhang et al. (2004) show that uncertainty reduction increases with each level and can 

be significant, reaching one half to three fourth reductions in the coefficient of variation (COV). 

Wang et al. (2016) also used Bayesian updating and the Bayesian Equivalent Sample Method for 

probabilistic characterization of geotechnical properties based on limited site investigation data to 

gain better assessment of uncertainty. It should be noted that uncertainty reduction means a better 

assessment of the variability of geotechnical properties; i.e., reduction of uncertainty about 

uncertainty. This reduction usually means a reduction in the assumed variability because when 

little information is available, it is typical to start with conservative assumptions of large variability 

and the variability is reduced as more information becomes available. The additional information 

could be in the form of more data points on the same property or more data from field or laboratory 

tests on related information that can be used to reduce the variability through Bayesian updating 

and multivariate correlations (Kulhawy & Mayne, 1990; Cao & Zhang, 2012; Ching et al., 2012; 

Huang et al., 2013). Neural networks also have been used with Bayesian-based learning and 

databases of test results to establish relationships between parameters and estimating soil 

properties (e.g. Neal, 1992; Goh et al., 2005; Goh & Kulhawy, 2006; Giovanis et al., 2010). 
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Figure 3.11 Uncertainty reduction using Bayesian approach (Zhang et al., 2004) 

 

3.7 Typical Soil and Rock Property Variability 

Well planned geotechnical investigations are necessary for a better understanding of the 

uncertainty in design parameters for a given project. However, during the early planning stages, it 

is often useful to consult published data on typical soil property variability. It is important to note 

that the variability of geotechnical design properties is significantly higher than that of other 

engineering materials. For example, while the resistance of most engineering materials has a COV 

of less than 20%, Table 3.5 (Ellingwood, 1980), the COV of some geotechnical properties can be 

as high as 300%, Table 3.6. In reliability-based design, reduction in parameter uncertainty 

translates directly into more optimal designs. Therefore, it is of great interest to assess uncertainty 

to produce designs that are reflective of that uncertainty. This section contains some typical COV 

ranges for common geotechnical design parameters and soil types suggested in the literature (e.g. 
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Schultze, 1971; Lee et al., 1983; Harr, 1987; Kulhawy, 1992; Lacasse & Nadim, 1997; Jones et 

al., 2002; Uzielli et al., 2006). A summary of soil property variability gleaned from some of these 

references is contained in Table 3.6. For rock, Aladejare & Wang (2017) provide a good collection 

of typical rock property variability for different types of rock. Highlights from Aladejare & Wang 

(2017) are not reproduced here. 

 

Table 3.5 Typical COV’s of common engineering materials (Ellingwood, 1980) 

Material Member Type Typical Resistance COV (%) 

Concrete Flexure beams 8-14 

Short columns 12-16 

Slender columns 12-17 

Shear beams 17-21 

Steel Tension members 11 

Compact beams 13 

Axially loaded columns 14 

Beam-columns 15 

Aluminium Tension members 8 

Beams 8-13 

Columns 8-14 

Glue-laminated timber beams 18 
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Table 3.6 Typical reported variability of select geotechnical properties 

Soil Type Parameter Test Type COV (%) Reference(s) 

Sands Tangent of friction angle tan    NS 5-15 1 

Angle of internal friction    NS 5-15 2 

NS 2-13 3, 4 

Undrained shear strength us   NS 20-50 2 

Relative density rD   Direct 10-40 6 

Relative density rD  based on SPT Indirect 50-70 6 

Clays Angle of internal friction    NS 12-56 2 

Liquid limit Lw   Lab 20-48 2 

Liquid limit, clay & silt Lw  Lab 6-30 6 

Plastic limit Pw   Lab 9-29 2 

Plastic limit, clay & silt Pw  Lab 6-30 6 

Plasticity index Lab 7-79 2 

Unconfined compressive strength NS 6-100 2 

Undrained shear strength us   NS 20-50 1 

NS 25-30 2 

NS 13-40 3, 4, 5 

UC 20-55 6 

UU 10-30 6 

CIUC 20-40 6 

Undrained strength ratio u

v

s
    NS 5-15 5 

Unit weight, clays and silts NS <10 6 

Permeability, partly saturated clays NS 130-240 3, 6 

Permeability, saturated clays NS 68-90 3, 6 
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Table 3.6 Continued 

Soil Type Parameter Test Type COV (%) Reference(s) 

NS Effective friction angle     NS 5-15 6 

Coefficient of consolidation vc   NS 25-50 1 

NS 33-68 6 

Compression index cC   NS 10-37 3, 4, 6 

Unit weight NS 5-10 1 

NS 1-10 2 

NS 3-7 3, 4 

Buoyant unit weight NS 0-10 5 

Young’s modulus NS 2-12 2 

Shear wave velocity NS 25-55 7, 8, * 

Over-consolidation ratio OCR   NS 10-35 6 

Coefficient of permeability NS 200-300 1, 2 

Pre-consolidation pressure NS 10-35 3, 5, 6 

Void ratio NS 15-30 1 

NS 13-42 2 

Void ratio & porosity all soil types NS 7-30 6 

Standard penetration test blow count Field 15-45 3, 4 

Field 25-50 6 

References: 

1. Schultze (1971) 

2. Lee et al. (1983) 

3. Harr (1987) 

4. Kulhawy (1992) 

5. Lacasse & Nadim (1997) 

6. Uzielli et al. (2006) 

7. Toro (1996) 

Abbreviations: 

1. NS: Not Specified 

2. CIUC: Consolidated‐

isotropically undrained 

compression 

3. UC: Unconfined compression 

4. UU: Unconfined Undrained 

5. *: Range assumed by author 
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8. Jones et al. (2002) 

 

As can be deduced from published typical variability of select geotechnical properties, unit 

weight seems to be one of the least variable soil properties ( 10%COV  ), followed by effective 

friction angle ( 5% 15%COV  ), while the most variable property is the coefficient of 

permeability with a COV as high as 300%. The variability noted in several key geotechnical design 

parameters is one of the reasons that a tiered approach is typically adopted for specifying 

variability in LSD/LRFD geotechnical design standards. One such tiered specification is that by 

the 2014 CHBDC which assigns different geotechnical resistance safety factors based on the 

“degree understanding” of site conditions and prediction model. The 2014 CHBDC specifies a 

three-tiered approach consisting of  “Low,” “Typical” and “High” degrees of understanding 

(Fenton et al., 2016). Another tiered approach is based on the anticipated level of site geotechnical 

variability as shown in Table 3.7, (Phoon & Kulhawy, 2008). Based on the literature review 

presented in Table 3.6, a three-tiered summary is proposed in Table 3.8. These proposed ranges 

are adopted in the analyses presented in this dissertation. 
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Table 3.7 Sample tiered scheme based on site variability (Phoon & Kulhawy, 2008) 

Property Variability COV (%) 

Undrained shear strength, us   

Low 10-30 

Medium 30-50 

High 50-70 

Effective friction angle,     

Low 5-10 

Medium 10-15 

High 15-20 

Lateral earth pressure coefficient, aK  or pK   

Low 30-50 

Medium 50-70 

High 70-90 

Notes: 

 “Low” variability is typical of good quality direct lab or field measurements 

 “Medium” variability is typical of indirect correlations with good field data, except for 

the standard penetration test (SPT) 

 “High” variability is typical of indirect correlations with SPT data and strictly empirical 

correlations 
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Table 3.8 Proposed three-tiered COV (%) ranges of select geotechnical properties 

Soil Type Property Test Type Low Medium High 

All Types Unit weight NS 1-4 4-7 7-10 

SPT blow count Field 15-26 26-38 38-50 

Young’s modulus NS 2-5 5-8 8-12 

Shear wave velocity NS 25-35 35-45 45-55 

Sands Friction angle NS 2-6 6-10 10-15 

Relative density Direct 10-20 20-30 30-40 

Relative density SPT-based 50-56 56-63 63-70 

Clays 

and 

Silts 

Friction angle NS 12-26 26-41 41-56 

Unconfined compressive strength NS 5-35 35-65 65-100 

Undrained shear strength NS 13-25 25-37 37-50 

Undrained shear strength UC 20-31 31-43 43-55 

Undrained shear strength UU 10-16 16-23 23-30 

Undrained shear strength CIUC 20-26 26-33 33-40 

Undrained shear strength ratio NS 5-8 8-11 11-15 

Permeability of unsaturated clays NS 130-165 165-200 200-240 

Permeability of saturated clays NS 68-75 75-82 82-90 

Coefficient of consolidation NS 25-39 39-53 53-68 

Compression index NS 10-19 19-28 28-37 

Over-consolidation ratio NS 6-15 15-25 25-35 

Pre-consolidation pressure NS 10-18 18-26 26-35 

Void ratio and porosity NS 7-18 18-30 30-42 

Abbreviations: 

 NS: Not Specified 

 CIUC: Consolidated‐isotropically undrained compression 

 UC: Unconfined compression 

 UU: Unconfined Undrained 
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CHAPTER 4  

DESIGN METHODS AND RELIABILITY QUANTIFICATION 

The deterministic computations described in Chapter 2 involve the use of assumed values 

for design variables that are known to be uncertain. Deterministic computations use representative 

values for design variables. Such computations provide an idea on the expected response without 

much information on the variability or the uncertainty of the response thus computed. Classical 

ASD or LRFD/LSD design schemes involve deterministic computations with safety factors 

applied to the demand and/or resistance sides of equations to embed some measure of safety in the 

design. In the case of the ASD approach, i.e., the global factor approach where a single safety 

factor is applied, all uncertainty is lumped into a single factor and the level of reliability is difficult 

to quantify and is only approximated based on judgement and historical performance. In the case 

of the LRFD/LSD approach, i.e., the partial factor approach, achievement of an intended level of 

reliability is only possible when the assumptions adopted in the development of the partial factors 

are also applicable to the design at hand. Most current design codes adopt this partial factor 

approach. 

In this chapter, the chronological progression of engineering design thought is described, 

Figure 4.1. This progression is presented as a transition from the “single factor” format based on 

accepted practice, historical performance and engineering judgement to the contemporary semi-

probabilistic “multiple factor” or “partial factor” approach that targets quantifiable reliability and 

risk levels through calibrated factors. The discussion sets the stage for “factor-free” reliability-

based design methods discussed in Chapter 5. 
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Figure 4.1 Progression of design philosophies 

 

4.1 Characteristic Values and Bias 

A basic decision in a deterministic computation of resistance or load involves the selection 

of characteristic values to use in the computational model. The selection which is often based on 

limited data or empirical correlations introduces bias. Contemporary design codes require the use 

of a “characteristic” or a “nominal” value of a design variable. This value is sometimes described 

as a prudent or cautious estimate of the mean; i.e., due to the limited size of the data set, the real 

mean of the variable is not the arithmetic mean from the data set but a lower or higher value 

depending on which side is more conservative. Schneider (1999) provides a suggested step-by-

step procedure for calculating the characteristic value for different data availability scenarios. Orr 

(2017) provides the historical background for characteristic value definitions, describes how it 

should be selected per Eurocode 7 and suggests an alternate equation that reduces subjective 

judgement in its selection. Below are some descriptions of this value from leading codes: 
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1. Prudent estimate: Model Code 2010 defines a prudent estimate as “a value which, 

compared to the estimate, is provided with an adequate margin to meet the required 

reliability,” (CEB-FIP, 2013). 

2. Characteristic value: ISO 2394 defines the characteristic value of a material property as a 

“priori specified fractile of the statistical distribution of the material property in the relevant 

supply,” (ISO, 2015). European design standards typically adopt the 5% fractile, i.e. for 

resistance, the value corresponding to a 95% confidence level (CEN, 2004). Eurocode 7 

describes the characteristic value of a geotechnical parameter as a “cautious estimate of the 

value affecting the occurrence of the limit state” (CEN, 2004). 

3. Nominal value: NCHRP 651 defines nominal values (e.g., the nominal resistance, nR  or 

nominal load, nQ ) as “those calculated by the specific calibrated design method and the 

loading conditions, respectively, and are not necessarily the means” (Paikowsky et al., 

2010). 

4.2 Global Factor Design 

In recent history, safety margins in engineering designs have been achieved through the 

conscious decision to separate the load effects, i
i

Q , and the nominal resistance, nR , by a certain 

safety margin.  The practice of applying a global factor of safety in geotechnical stability 

computations dates back to the eighteenth century (Belidor, 1729; Coulomb, 1773). The approach 

was formalized in the early 1900’s in steel design practice through the allowable (working) stress 

design (ASD or WSD) method where the applied stresses are not permitted to exceed an allowable 

(working) stress equal to yield stress divided by (or multiplied by) a global factor of safety. In 
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terms of loads, the applied loads, i
i

Q , are not permitted to exceed an allowable load, allR  equal 

to the nominal capacity divided by a global factor of safety, FS : 

 n
i all

i

RQ R
FS

    (4.1) 

The global factor of safety is typically applied to the resistance side to obtain an 

“allowable” resistance as shown in the equation above by dividing a nominal resistance by a 

number greater than 1, or by multiplying it by a number smaller than 1 as done in steel working 

stress design where the steel yield strength is multiplied by 0.6, i.e., 1 1.670.6FS   . 

For foundation bearing capacity, the conventional global factor of safety is based on load 

increase; ult

all

qFS q , i.e., a factor relating the ultimate load (or ultimate bearing capacity) to the 

allowable load (or allowable bearing capacity). It is intuitive to think of bearing capacity as the 

load required to cause failure; i.e., the load is increased to the point of failure. In geotechnical 

design, alternate expressions of the global factor of safety can be devised based on shear strength 

reduction, i.e., based on reduction, under constant load, of effective cohesion, c and effective 

friction, tan , to the point of failure (Griffiths, 2015). This approach is counter-intuitive but it 

can serve to illustrate the sensitivity of geotechnical problems to variations in resistance. Griffiths 

found that the conventional bearing capacity factor of safety (based on load increase) is about 

twice that based on strength reduction; e.g., the typical conventional factor of safety of 3 would be 

approximately equivalent to a strength reduction safety of factor of 1.5. Griffiths (2015) noted that 

this finding illustrates the fact that geotechnical problems are more sensitive to strength reduction 

than they are to load increase. 
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The value of the global factor of safety accepted in practice is different depending on the 

industry, historical performance, the design problem formulation, material providing resistance, 

local/regional preferences and the designer’s judgement, Table 4.1. For geotechnical designs 

where soil resistance is typically highly variable, global safety factor values vary widely between 

1.3 for slope stability and 3.0 for bearing capacity (Terzaghi & Peck, 1948, 1967). For geotechnical 

problems, these common factor of safety values correspond to differing levels of reliability; e.g. 

slopes designed to a factor of safety of 1.3 are a lot less reliable that foundations designed to 

bearing capacity factor of safety of 3.0 (e.g. Lumb, 1970). These factor of safety ranges have been 

established through practice and historical performance without the benefit of a robust 

scientific/probabilistic basis. There is overwhelming agreement in literature that the traditional 

global factor of safety is not a reliable measure of reliability. 

Table 4.1 Typical global safety factors 

Application Failure Mode Typical Factor of Safety 

Shallow foundations and 

retaining walls 

Bearing capacity 2.0-3.0 

Sliding 2.0-3.0 

Overturning or overall stability 1.25-2.0 

Settlement or tilt 1.0 

Slope stability Slope failure > 1.1 seismic 

> 1.5 static 

 

4.3 Partial Factor Design 

The idea of assigning different safety factors to loads and resistance appears to have been 

first introduced in Denmark. Danish structural engineer A. J. Moe reportedly proposed the concept 

as early as 1927, (Krebs Ovesen, 1981). Moe (1936) recognized the many inconsistencies caused 

by the use of a single factor of safety and proposed using separate factors of safety for dead load, 
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live load and material resistance in the design of concrete structures. The concept was partly 

introduced in the Danish Code of Practice for Concrete Design in 1949 and was further detailed 

for the design of retaining structures by Hansen (1953). By the mid-1950’s, partial factor design 

became the norm in Denmark through Danish Standard DS-415 and was widely accepted by 

engineers. It is worthwhile to note that the introduction of partial factors was not motivated by 

uncertainties but by inconsistencies associated with different behavior at serviceability and 

collapse scenarios and different nature of loads; e.g., dead vs live loads  (Bolton, 1993). 

In the mid-1950’s, strength-based formulations were introduced in the United States by the 

concrete industry; first in ACI 318-56 as a recognized and permitted methodology, then in ACI 

318-63 where working stress and strength design methods were covered equally and finally in ACI 

318-71 which was based fully on strength design. The strength design approach is also referred to 

as ultimate strength design because loads are factored, and members are sized to provide a code 

mandated design strength (or resistance), dR , approaching ultimate resistance. The de facto result 

of the methodology is to factor loads and resistance separately. The approach was promoted by the 

concrete industry because working stress design, performed at working load levels and assuming 

linear elasticity, is not adequate in capturing the inelastic concrete behavior at higher loads. Thus, 

the principal original motivation was not the separation of uncertainties in loads and resistances 

but the capture of a more realistic concrete capacity in the inelastic range. Code mandated design 

resistance, dR  is obtained by multiplying the nominal ultimate resistance, nR , by a resistance 

reduction factor,    . 

 d nR R   (4.2) 
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The strength design method is thus formulated as ensuring that the code mandated design 

resistance, dR , is greater than the factored (design) loads, ( )d i
i

Q  : 

 ( )d n d i
i

R R Q    (4.3) 

Prompted by the Danish practice and energized by reconstruction effort following World 

Word II, many European technical organizations and national committees spent the 70’s and 80’s 

on the development of model codes for various materials. Among the early deliverables of this 

effort were British Standard CP110 on the Structural Use of Concrete published in 1972 and NKB 

Report No. 36 published in 1978 by the Nordic Committee on Building Regulations (BSI, 1972). 

British Standard CP110 used “limit states” terminology to consider limiting states such as those 

related to collapse, deformation and cracking. CP110 was also a pioneer in the explicit use of 

probability theory and statistics in the selection of a “characteristic” value of strength; e.g., the 

95% fractile (or the 5% quantile) where 95% of samples have higher values. NKB Report No. 36 

outlined the basic principles of Limit States Design (LSD). 

In the US, the steel industry introduced load and resistance factor design (LRFD) 

methodology in 1986 where the explicit purpose of partial factors was the separation of 

uncertainties in loads and resistance so that they can be assigned different safety factors reflective 

of those uncertainties. In 1989, in anticipation of a smooth transition to LRFD, AISC released what 

was supposed to be the last revision of the allowable stress (ASD) design manual (AISC, 1989).  

However, primarily due to the low variability in steel resistance, the ASD methodology had been 

working well since its inception in the early 1900’s. This fact combined with the ensuing confusion 

with the partial factor approach resulted in the steel design community resisting the move to LRFD 

and AISC releasing a combined ASD/LRFD design manual in 2006. While the US steel industry 
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struggled with the transition to LRFD, transportation departments across North America embraced 

the new methodology, spearheaded its application to bridge design and extended it to geotechnical 

and foundation design. In 1983, the Ontario Highway Bridge Design Code introduced partial 

factors and geotechnical limit states design to Canadian engineering practice (Becker, 1996b, 

1996a, 2003; Fenton et al., 2016).  In 1994, AASHTO released the first LRFD based design 

specifications (AASHTO, 1994). By the turn of the millennium, all European and most North 

American design codes, as well as many codes around the world, have adopted the LRFD/LSD 

format with a few exceptions in U.S. geotechnical design practice. Current geotechnical design 

standards assign partial factors to resistances and such factors are calibrated to work with specific 

partial load factors typically outlined in loads standards such as ASCE 7 (ASCE, 2017). The 

calibration of the partial factors reflected some newer knowledge based on uncertainties but was 

mostly carried out with the aim of recovering, as much as possible, reliability levels understood to 

be present in classical ASD design. As Christian (2007) pointed out, such an objective would be 

misguided as it nullifies the benefits of new, fundamentally sound methods.    

4.3.1 Limit States Design 

Limit states design is predicated on ensuring, to a predefined level of reliability, that a 

certain “limit” state of a structure or foundation is not reached. Reliability of a structure or 

foundation is its ability to fulfil its design purpose for a specified design lifetime. IEC 61400-1 

defines a limit state as the “state of a structure and the loads acting upon it, beyond which the 

structure no longer satisfies the design requirement” (IEC, 2008). For example, if for a given 

failure mode, the effect of the applied loads, i
i

Q Q , exceeds resistance, R , then that limit state 

is violated, and failure is said to have occurred. A limit state is often expressed as a performance 
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function g  being equal to zero; i.e., 0g  , with the unacceptable domain being 0g  . A common 

form of the limit state (or performance) function, g , is presented as the case where the factor of 

safety, RFS Q , is equal to 1: 

 1 1 0Rg FS
Q

       (4.4) 

Other equally valid forms of the limit state function include: 

  0 or log log 0Rg R Q g FS
Q

 
      

 
  (4.5) 

  Resistance is a function of many variables that are uncertain; i.e. random variables, and so 

are the load effects. Thus, resistance, load effects and the factor of safety are themselves uncertain 

random variables. Figure 4.2 (a) and Figure 4.2 (b) show sample PDF’s of resistance, load effects 

and factor of safety. 

4.3.2 Probability of Failure (and Success) 

Designs performed using LSD/LRFD and reliability-based methods have a target 

probability of failure, T
fp , as the main design criterion for each limit state. The probability of 

failure is defined as the probability that resistance is less than the load effects: 

    0fp P R Q P g      (4.6) 

Referring to Figure 4.2 (a) and assuming that resistance and loads are independent random 

variables, the infinitesimal contribution to probability of failure from each infinitesimally small 

increment dx  of the variate is: 
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     ( ) ( )Q RP x Q x dx P R x f x F x dx        (4.7) 

where ( )Qf x  is the loads effects PDF and ( )RF x  is the resistance CDF. When this contribution is 

integrated over all possible variates of the loads effect, the total probability of failure is obtained 

as: 

  ( ) ( ) ( )f Q Q Rp f x P R x dx f x F x dx        (4.8)  

 

Safety is the complementary event of failure; i.e., if the probability of success, also called 

reliability, is sp  then 1f sp p  . Both probabilities ( fp  and sp ) vary between 0 and 1.  If the 

probability of failure is known, reliability (or the probability of success) can be calculated as: 

 1 1 ( ) ( )s f Q Rp p f x F x dx       (4.9) 

4.3.3 Reliability Index 

An alternative approach of calculating the probability of failure is through the factor of 

safety PDF. It is difficult to characterize the factor of safety distribution if loads and resistance are 

not normally distributed. However, since loads effect and resistance are typically the product of 

other random variables of varying probability distributions, they tend to be normally distributed. 

Therefore, it is common to assume that the factor of safety is normally distributed as shown 

in Figure 4.2 (b); i.e., 2( , )FS FSFS N   . If ( )FSF x  is the factor of safety CDF, the probability of 

failure is the shaded area in Figure 4.2 (b) and is calculated as: 

      11 1FS
f FS

FS

p F   


 
        

 
  (4.10) 
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Figure 4.2 PDF of normally distributed resistance, load effects and FS 

 

In the above equation, where   is the standard normal CDF and   is commonly called the 

reliability index and is calculated as: 

  11FS
f

FS

p



     (4.11) 



115 
 

The reliability index is a measure of reliability or safety of the design. In fact, the reliability index 

was referred to as the safety index in the 80’s and 90’s (Nowak, 1983; Reddy et al., 1994; Wang 

& Grandhi, 1994): 

    1 1 1s fp p         (4.12) 

The reliability index measures the shortest distance, in units of performance function 

standard deviations, between the most probable point (calculated at the mean values of random 

variables) and the failure point. Figure 4.3 illustrates these relationships for a normally distributed 

FS with mean of 2.5 and standard deviation of 0.75. As indicated by Equation (4.11), there is a 

one-to-one relationship between probability of failure and reliability index. Therefore, the use of 

a reliability index as a design target is equivalent to using a probability of failure.  

 

Figure 4.3 Illustration of probability of failure, reliability index and factor of safety 
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The reliability index can also be computed rigorously for normally distributed resistance 

and load effects as a function of the mean factor of safety, R

Q
FS 

 , and coefficients of 

variation of resistance and load effects, RCOV  and QCOV , respectively. The expression depends 

on the specific form adopted for the limit state function as shown in Table 4.2 (Li & Lumb, 1987). 

When loads effect and resistance are both lognormally distributed, the reliability index can be 

calculated as follows (Whitman, 1984): 

 
  

2

2

2 2

1
ln

1

ln 1 1

Q

R

Q R

COV
FS

COV

COV COV


 
 
  

   

  (4.13) 

Table 4.2 Reliability index for normally distributed loads and resistance 

Limit State Function Format Reliability Index 

1 0g FS    2 2

1

R Q

FS
FS COV COV

 



 

0g R Q    2 2 2

1

R Q

FS

FS COV COV
 



 

ln( ) 0g FS   
 
2 2

ln

R Q

FS

COV COV
 


 

 

As evidently clear from these expressions, the relationship between the reliability index 

and the factor of safety depends of the coefficients of variation of loads and resistance; i.e., the 

variability of loads and resistance. This fact illustrates why a global factor of safety is not a good 

measure of reliability. 
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For normal variables, the relationship between probability of failure and reliability index 

is shown in Figure 4.4. An approximate expression is provided by Baecher & Christian (2003) and 

is plotted on the same graph shown in Figure 4.4: 

 

 4.3460 2 6fp e for      (4.14) 

and 

 9 1

460ln
10 10

4.3
f

f

p
for p  

 
  
      (4.15) 

 

 

Figure 4.4 Probability of failure vs reliability index for normal variables 
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The relationship proposed by Baecher & Christian (2003) was provided with validity limits 

on reliability ( 2 6  ). To obtain better accuracy for a wider range of reliability levels, the 

relationships shown in Table 4.3 are suggested in this dissertation. Figure 4.5 illustrates the 

goodness of fit of the proposed relationships. The improved relationships are especially important 

for low reliability levels such as encountered in serviceability limit states or high reliability levels 

such as those required when probability of failure must be very low. 

 

Table 4.3 Suggested probability of failure vs reliability index relationships 

Range  fp f    ff p   2R  

36 10 , 2.6fp     2.061.2fp e   1 1.2ln
2.06 fp


 

   
 

 
0.98 

6 310 6 10fp     

2.6 4.8   

4.0196fp e   1 196ln
4.0 fp


 

   
 

 
0.99 

610 , 4.8fp    6 5.810fp e   61 10ln
5.8 fp


 

   
 

 
1.00 

 

4.3.4 Risk and Tolerable Risk Concepts 

ISO-2394 defines risk as the “effect of uncertainty on the objectives” and clarifies this 

definition with a note that “risk is the expected value of all undesirable consequences, i.e. the sum 

of all the products of the possible consequences of an event and the corresponding probabilities” 

(ISO, 2015). It is obvious from this definition that risk is not equivalent to the likelihood or 

probability of failure, fp . In other words, if the occurrence of a failure does not carry 

consequences, the risk represented by that failure is zero. 
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Figure 4.5 Curve fitting of probability of failure vs reliability index relationship 

  

Probability of failure is a real number that varies between 0 (impossibility of failure) and 

1 (certainty of failure) and that can be calculated using probability theory. Risk is also not 

equivalent to hazard. While hazard is the probability that  a threat or danger occurs and causes 

failure within a given time period, risk measures the exposure to damages resulting from that 

occurrence and is defined as hazard multiplied by potential worth of loss (Lacasse et al., 2012). 

Risk involves quantification of the damage or the consequence of failure. When the consequence 

of failure is low, a higher probability of failure can be tolerated. The opposite is also true; i.e., 

when the consequence of failure is high, a lower probability of failure needs to be sought to achieve 

a similarly tolerable risk. Therefore, a more accurate expression of risk should incorporate the 

probability of the hazard materializing, the probability of failure when exposed to the hazard and 

the consequence of failure. The probability of the hazard and the probability of failure when 
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exposed to the hazard can be combined into a probability of failure conditioned on a hazard 

magnitude or a return period for the hazard. An accepted formula for risk is to express it as a 

product of the probability of failure, fp , and the consequence of failure, fc : 

 f fRisk p c   (4.16) 

As can be deduced from the above equation, the risk associated with a high probability of 

failure and low consequence may represent the same risk as the case of a low probability of failure 

but high consequence of failure. 

It is important to note that while the probability of failure can be computed mathematically 

and is within the scope of engineers, the consequence of failure is a measure of human and 

economic impacts and often includes considerations that are difficult to evaluate or put in monetary 

terms, such as human life or environmental/ecological damage. The value given to such 

considerations is subjective and is typically a function of evolving societal norms (Vick, 2002; 

Trbojevic, 2005; Bea, 2006; Trbojevic, 2009). Standards are starting to include rational methods 

for quantifying such consequences; e.g., through the Marginal Lifesaving Cost (MLSC) principle 

and the concept of Life Quality Index (LQI) as “an indicator of the societal preference and 

capacity for investments into life safety” (Nathwani et al., 1997; ISO, 2015). Many of these 

methods classify risk as negligible, tolerable or non-acceptable, with risks falling in the tolerable 

category requiring an analysis to show that they are As Low As Reasonably Possible/Practicable 

(ALARP) (Bowles, 2013). In the United States, ALARP principles and risk-informed decision 

making are adopted extensively by the US Army Corps of Engineers (USCOE, 2014). 

Geotechnical and structural design standards attempt to capture the consequence 

component of risk by assigning different building class categories, risk categories, or importance 
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factors to structures and facilities with different consequences of failure (ASCE, 2017; ICC, 2018).  

Perhaps a classic example where more thorough consideration of consequence of failure could 

have yielded different results is the extensive damage caused by Hurricane Katrina in 2005. In a 

“lessons learned” paper, the need for a risk-based planning and design approach was identified 

(Sills et al., 2008). 

4.3.5 System and Component Reliability 

Most structures consist of many components and the reliability of such structures depends 

on the reliabilities of the different components and on how such components are assembled; i.e., 

on the load paths and the degree of redundancy present in such assemblages. For wind turbine 

foundations, particularly gravity-based foundations, there is no redundancy. Reliability depends 

on verifying different limit states representing different failure modes. This is equivalent to 

thinking of the foundation as a single component of a system or as a system consisting of a single 

component which can fail in different modes. Such a system can be modeled as being in series 

where the occurrence of failure in any of the failure modes causes the failure of the entire system. 

Note that failure here includes violation of any limit state and does not necessarily mean collapse. 

If all failure modes are statistically independent, the reliability of the system is equal to the product 

of reliabilities of all possible failure modes; i.e., if there are n  possible failure modes, the reliability 

of failure in mode i  would be ips  and the reliability of the full system would be (Nadim, 2007): 

  
1 1

1
n n

i i
i i

PS ps pf
 

      (4.17) 

 For low probabilities of failure, the probability of failure of the system would then be: 
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  
11

1 1 1
n n

i i
ii

PF PS pf pf


        (4.18) 

If probabilities of failure of all components in series are perfectly correlated, the probability 

of failure of the system is simply the probability of failure of the most unreliable component; i.e., 

 max iPF pf . In all cases, the probability of failure of the foundation system is bounded as 

follows: 

    
1

max 1 1
n

i i
i

pf PF pf


      (4.19) 

Except for unusual proportions, a foundation that is likely to fail in one mode is also likely 

to fail in at least a few other modes. Thus, foundation failure modes are typically strongly 

correlated. The usual assumption in foundation design is to assume that failure modes are perfectly 

correlated and to use the failure probability of the least unreliable mode as that for the foundation 

system, i.e.,  max iPF pf .  

The risk can then be calculated by multiplying the probability of failure of the system 

(foundation) by the consequences of failure. This dissertation is limiting the analyses to the 

determination of the probability of failure for a few modes or limit states; i.e., there are no risk 

evaluations.    

4.3.6 Target Reliability Specification 

As mentioned in earlier sections, there is a one-to-one relationship between probability of 

failure and reliability index. Thus, specifying a target reliability index is equivalent to specifying 

a target probability of failure. Figure 4.6 shows this one-to-one relationship and points on the curve 

indicating approximate ranges of typical levels of design reliability common in design standards. 
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Selecting the target reliability index (or probability of failure) for a design needs to consider at 

least the following three aspects: cost of safety measures, failure consequences and time of 

exposure as reflected in a reference period (Holický et al., 2015). The first two aspects are cost 

related, while the third is an integral input to the determination of the probability of failure as the 

reference period needs to be mentioned whenever the probability of failure is specified.  

 

 

Figure 4.6 Customary design acceptance for different reliability levels 

 

4.3.6.1 Failure Consequences 

Failure consequences include potential losses in human lives, injuries and material damages. 

Failure consequences should also include direct damage caused by the failure and indirect damage 

caused to the surrounding environment and to society at large. 
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4.3.6.2 Cost of Safety Measures 

These are the costs associated with incorporating certain safety measures in the design to achieve 

the desired reliability level. Theoretically, a structure can be made so stout and a foundation can 

be made so large that failure is impossible or extremely rare. However, such safety measures come 

at costs that need to be balanced against the benefits through a cost-benefit analysis. This is 

typically achieved through an assessment of the marginal cost of reliability; i.e., the ratio of 

additional costs to reduction in risk. The point of diminishing returns indicates that an optimal 

design has been reached. 

4.3.6.3 Reference Period 

For most civil, structural and geotechnical design standards where failure can involve loss 

of human lives, the implied reliability levels are specified based on annual probabilities; i.e. 1-year 

reference period. Another common reference period is 50 years. Reliability levels for another 

arbitrary reference period, reft , can be estimated, assuming reference period independence, based 

on the reliability for annual probabilities, 1  (CEN, 2005): 

   1
1

tref
tref        (4.20) 

The assumption of reference period independence is common for ULS and SLS limit states. 

However, it is obvious that such an assumption cannot be expected to be valid for fatigue limit 

states as such states are concerned with fatigue life where the annual probability of fatigue failure 

is time dependent; i.e. dependent the current age of the element and the associated accumulated 

damage. 
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4.3.7 Reliability Implied in Various Design Standards 

According to Baecher and Christian (2003), a reliability index of 2 to 3 is common in 

modern (circa 2003) design codes, while typical values for ASD methods ranged from 2.5 to 3.5 

corresponding to probabilities of failure of 10-4 to 10-2. However, in a critical review of safety 

acceptance criteria, Diamantidis (2008) found a much larger scatter in annual reliability implied 

by current (circa 2008) design codes and standards, varying between a reliability index of 

33 ( 10 )fp    to 127 ( 10 )fp    .  This wide range could be attributed to conflicting 

objectives in the selection of the target reliability in the various codes. For examples, standards for 

critical and significant structures prioritize human safety, while the majority of standards for 

common buildings are mere calibrations to match previous codes, and yet a smaller percentage of 

codes are based on cost-benefit optimizations. It is also important to mention that target reliability 

is typically applied to components or dominant failure modes rather than to whole systems or 

structures. Designers should be cognizant of any dependencies in component reliabilities; e.g. 

parallel or series dependencies and how they impact the reliability of whole systems.   

4.3.7.1 Eurocode 1990 

The objective of reliability differentiation in the EN 1990 is the socio-economic 

optimization of resources considering the cost of construction and the consequences of failures. 

Reliability differentiation is achieved through the following three Reliability Classes (RC’s) that 

are directly associated with three Consequence Classes (CC’s) (CEN, 2005): 

 RC1: High consequence for loss of human life, or very great economic, social or 

environmental consequences 
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 RC2: Medium consequence for loss of human life, or considerable economic, social or 

environmental consequences 

 RC1: Low consequences for loss of human life, and small/negligible economic, social or 

environmental consequences 

Implicit minimum reliability levels for 1 and 50 reference periods are summarized in Table 

4.4 for the three reliability classes and low relative cost of safety measures. For reference, 

residential and office buildings are typically classified as RC2 structures with notional reliability 

index of 3.8 for a 50-year reference period. More detailed notional reliability levels that consider 

the relative cost of safety measures are shown in Table 4.5. 

 

Table 4.4 Notional minimum reliability levels in EN 1990 (CEN, 2005) 

Reliability 

Class 
Minimum reliability index min   

1-year reference period 50-year reference period 

ULS FLS SLS ULS FLS SLS 

RC3 5.2 NA NA 4.3 NA NA 

RC2 4.7 NA 2.9 3.8 1.5 to 3.8 1.5 

RC1 4.2 NA NA 3.3 NA NA 

  

Table 4.5 EN 1990 notional ULS reliability considering costs of safety measures 

Relative costs 

of safety 

measures 

1-year reference period 50-year reference period 

Consequence of failure Consequence of failure 

Small Some Moderate Great Small Some Moderate Great 

High 2.3 3.0 3.5 4.1 0.0 1.5 2.3 3.1 

Moderate 2.9 3.5 4.1 4.7 1.3 2.3 3.1 3.8 

Low 3.5 4.1 4.7 5.1 2.3 3.1 3.8 4.3 
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4.3.7.2 fib Model Code for Concrete Structures 2010 

The fib Model Code for Concrete Structures 2010 provides codification guidance that can 

serve as basis for concrete design codes  (CEB-FIP, 2013). It is published by the International 

Federation for Structural Concrete which serves as a “pre-normative” organization with global 

participation. Target reliability indices recommended by this guidance are shown in  Table 4.6 and 

Table 4.7. Per this guidance, three consequence levels are considered for ULS: low, medium and 

high. Also, this guidance considers FLS as part of ULS. For SLS, this guidance considers whether 

the serviceability issue is reversible or irreversible, Table 4.7. 

 

Table 4.6 fib Model Code 2010 reliability indices for ULS/FLS  (CEB-FIP, 2013) 

Consequence level 50-year reference period 1-year reference period 

Low 3.1 4.1 

Medium 3.8 4.7 

High 4.3 5.1 

 

Table 4.7 fib Model Code 2010 target reliability indices for SLS (CEB-FIP, 2013) 

Serviceability nature Reference period T  

Reversible Life 0.0 

Irreversible 50-year 1.5 

Irreversible 1-year 3.0 

 

4.3.7.3 ISO 2394 General Principles on Reliability for Structures 

ISO-2394 is an international standard that outlines general principles of reliability-based 

design of structures (ISO, 2015). This document is commonly included by reference in other 
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international standards such as the IEC61400 series developed by the International 

Electrotechnical Commission for utility scale wind turbines (IEC, 2008, 2016). The methodical 

basis for ISO-2394 is outlined in the Probabilistic Model Code (JCSS, 2000, 2001a, 2001b) and in  

Risk Assessment in Engineering Principles, System Representation & Risk Criteria (JCSS, 2008). 

ISO-2394 (2015) identifies five consequence classes (Class 1 through Class 5) with increasing 

consequence from Class 1 characterized as “predominantly insignificant material damages” to 

Class 5 described as “catastrophic events causing losses of societal services and disruptions and 

delays beyond national scale over periods in the order of years.” Large wind turbines and 

unmanned offshore facilities fall into Class 2 which is described as “material damages and 

functionality losses of significance for owners and operators but with little or no societal impact; 

less than five fatalities.” Intended reliability levels for ULS and 1-year reference period are shown 

in Table 4.8. The level of reliability indicated in bold font in this table; Class 3 with normal cost 

of safety measures, agrees with the 1-year level adopted by EN 1990 for moderate consequence of 

failure and relative cost of safety measure  (Table 4.5) and the 1-year level adopted by fib Model 

Code 2010 for low consequence level (Table 4.6). 

For serviceability limit states, JCSS (2001a) distinguishes between reversible and 

irreversible limit states and recommends the tentative target reliability indexes shown in Table 4.9 

for irreversible limit states and 1-year reference period. As can be noted, there is a large 

discrepancy with the recommendations of the fib Model Code 2010. 

4.3.7.4 Reliability Implied in North American Standards 

Target reliability indices for geotechnical design per several North American design codes 

and guidelines are listed in Table 4.10 (Canadian Geotechnical Society, 2006). As can be seen, the 
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ranges are comparable to European and International standards, but the guidance is not so granular 

as to delineate between the limit state categories and consequence of failure classes. 

 

Table 4.8 ISO-2394 ULS reliability for 1-year reference period (ISO, 2015) 

Relative cost of safety 

measure 

Consequence of failure class 

Class 2: Minor Class 3: Moderate Class 4: Large 

T  fp   T  fp  T  fp  

Large 3.1 ≈ 10-3 3.3 ≈ 5∙10-4 3.7 ≈ 10-4 

Normal 3.7 ≈ 10-4 4.2 ≈ 10-5 4.4 ≈ 5∙10-6 

Small 4.2 ≈ 10-5 4.4 ≈ 5∙10-6 4.7 ≈ 10-6 

 

Table 4.9 Target irreversible SLS reliability, 1-year reference period (JCSS, 2001a) 

Relative Cost of Safety Measure Target reliability index & probability of failure 

High 11.3 10T
T fp    

Normal 21.7 5 10T
T fp     

Low 22.3 10T
T fp    

 

Table 4.10 Implied North American annual target reliability indices 

Design code or guide SLS ULS FLS 

Electric Power Research Institute (EPRI) 2.6 3.2 NA 

National Building Code of Canada (NBCC) NA 3.5 NA 

AASHTO 2.0 to 3.5 

Canadian Foundation Engineering Manual 2006 2.8 to 3.5 
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4.3.7.5 Reliability Levels for Wind Turbine Structures 

Sorensen & Toft (2014) provide background information and assumptions made in the 

recommendations of partial safety factors included in IEC61400-1 and IEC61400-6 ((IEC, 2008, 

2016). Based on this background document, the following assumptions and observations are 

relevant to wind turbines: 

1. In case of failure or at the end of its lifetime, a new wind turbine is erected 

2. Failures only cause economic damage; i.e., failures do not result in fatalities or 

pollution 

3. A key driver of design is the reduction of cost of energy; this means that the relative 

cost of safety measures is high. 

4. The fact that wind turbines are type-certified means that most turbines have hidden 

safety since each turbine is designed to the higher limits of its class but will operate at 

conditions that are less severe than the higher limits. 

With the above assumptions in mind, the notional target annual probability of failure is 

selected as 45 10T
fp    which corresponds to a target reliability index of 3.3T  . As shown in 

Table 4.5, this reliability level corresponds to a high cost of safety measures and to a consequence 

of failure between “some” and “moderate” per EN 1990. With regards to ISO-2394, this suggested 

reliability level corresponds to consequence of failure Class 3 and large relative cost of safety 

measures, Table 4.8. This appears to be more conservative than the classification of large wind 

turbines into Class 2 per ISO 2394. If the ISO 2394 classification were adopted, the annual 

probability of failure would be 310fp  and the reliability index would be 3.1  . This 

discrepancy could be due to the recommendation made by JCSS (2001a) to overestimate the target 
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reliability index by no more than 5% to account for uncertainty caused by the use of approximate 

calculation methods; thus the higher target is obtained from: 3.1 1.05 3.3T    . This reliability 

target; i.e. 43.3 and 5 10T
T fp    , is also specified by ISO 19902 for fixed steel offshore 

structures that are unmanned or that are evacuated during severe storms (ISO, 2007). 

4.3.7.6 Reliability Levels Adopted in this Dissertation 

Target reliability levels adopted in this dissertation for the design of onshore wind turbine 

foundations are indicated in Table 4.11. These levels are based on the aforementioned discussion 

of notional reliability targets in various standards and particularly in Sorensen & Toft (2014) 

background document to IEC61400-1. The ULS reliability level is as recommended by Sorensen 

& Toft (2014) and corresponds to the EN1990 level for structures with high relative cost of safety 

measures and some-to-moderate consequences of failure. Target reliability for serviceability limit 

states is based on the assumption of normal costs of safety measures as recommended in (JCSS, 

2001a). The SLS reliability level adopted here is higher than would be if costs of safety measures 

were considered high as done for the ULS case and is comparable to a level between either of the 

following EN1990 scenarios: (i) high cost of safety measures with some to moderate consequence 

of failure, or (ii) moderate cost of safety measures with small to some consequence of failure. 

 

Table 4.11 Target reliability for onshore WTG foundations adopted in this work 

Limit State Reference Period Reliability Index Probability of Failure 

ULS 1-year 3.3 ≈ 5∙10-4 

50-year 2.0 ≈ 2∙10-2 

SLS 1-year 1.7 ≈ 3.5∙10-2 

50-year 1.0 ≈ 0.165  
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4.3.8 Limit States Design of Wind Turbine Foundations 

Under combined loading, failure of a shallow foundation can be in the form of excessive 

settlement, tilt, overturning, sliding or failing in any one of several bearing modes. For wind 

turbine foundations, a low stiffness of the foundation can also affect the performance of the tower 

structure. Each of these outcomes can be described in terms of a limit state where the foundation 

is either failing to perform as required and is thus affecting the performance of the plant; i.e. has 

violated a serviceability limit state, or has totally collapsed; i.e., has violated an ultimate limit state. 

There are at least three types of limit state categories that are relevant to the design of wind turbine 

foundations: 1) Ultimate Limit States (ULS), 2) Serviceability Limit States (SLS) and 3) Fatigue 

Limit States (FLS). 

4.3.8.1 Ultimate limit states (ULS) 

Violation of an ultimate limit state is typically associated with a catastrophic failure. 

Examples include soil bearing capacity failure, foundation overturning, foundation sliding and 

concrete flexure, shear or punching failures. Catastrophic failures are total failures that cause 

collapse of the turbine or render it unsafe to operate or approach. 

4.3.8.2 Serviceability limit states (SLS) 

Violation of a serviceability limit state results in a plant that may operate outside specified 

tolerances and limits. Continued operation outside tolerances typically leads to distressed 

components, break downs and/or reduced life. Example serviceability limit states include 

unacceptable foundation tilt, settlement, stiffness and excessive concrete cracks. 
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4.3.8.3 Fatigue limit states (FLS) 

Fatigue limit states involve material failures caused by repeated application of variable 

loads and are typically unpredictable and catastrophic. Some designers and design standards, such 

as the fib Model Code (CEB-FIP, 2013), classify fatigue limit states as ultimate limit states. 

However, methods for evaluating fatigue are very different from those of the common ultimate 

limit states and are dependent on the material fatigue characteristics and the loading spectra. 

Because of the cyclic and highly variable nature of the loading, the fatigue life of practically all 

components and materials making up the foundation is normally verified. 

4.3.8.4 Semi-probabilistic Design Optimization 

Wind turbine foundation design practice involves verification of multiple limit states and 

selection of the least cost design that is valid for all limit states under consideration, Figure 4.7. 

This dissertation is focused on three common limit states: one ultimate limit state; i.e., bearing 

capacity, and two serviceability limits; i.e., tilt and rotational stiffness. Experience indicates that 

serviceability limit states often govern the design of WTG foundations. For instance, foundation 

stiffness is likely to govern most foundations supported on soft subgrades. Fatigue limit states of 

structural materials (steel, concrete, grout, etc) may also govern the design, however, their 

treatment is beyond the scope of this dissertation. 
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Figure 4.7 Selection of least cost design meeting multiple limit states 
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CHAPTER 5   

RELIABILITY-BASED DESIGN 

At the second Karl Terzaghi Lecture delivered in 1964, Casagrande spoke of Terzaghi’s 

accomplishments in reducing “unknown risks” through rational methods of soil mechanics 

(Casagrande, 1965). Casagrande emphasized the need for careful consideration of risks and for the 

exercise of judgment to achieve “calculated risk.” Casagrande described “calculated risks” as: 

"(a) The use of imperfect knowledge, guided by judgment and experience, to 

estimate the probable ranges for all pertinent quantities that enter into the 

solution of the problem. 

(b) The decision on an appropriate margin of safety, or degree of risk, taking into 

consideration economic factors and the magnitude of losses that would 

result from failure." 

While Casagrande gave a well-formulated definition of calculated risks, he did not specify 

how risk could be calculated. In fact, Casagrande acknowledged that calculated risk was a problem 

which, at the time, “defied quantitative analysis." The practical takeaway from Casagrande’s 

hopeful definition was that “calculation of risk” consisted of the careful consideration of risk 

relying most likely on local/regional experience, professional experience and judgement, but 

without a clear and systematic process for how this objective could be achieved. 

Whitman (1984) revisited the topic at the 17th Karl Terzaghi Lecture by reviewing advances 

in reliability analysis and applications of probability theory over the two decades since 

Casagrande’s lecture and attempted to answer the question of whether risk can (or should) be 

calculated. One of Whitman’s concluding remarks was the recommendation that reliability theory 

may only be used to guide the selection of a safety factor if the problem was well understood and 

there was an adequate related database. Whitman also acknowledged a reigning perception of 
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doubt among geotechnical engineers that risk could or even should be calculated. However, 

Whitman still argued that the need for reliability analysis in geotechnical engineering would 

continue to exist and that such studies must be pursued further. 

Two decades later, at the Sixth Arthur Casagrande Memorial Lecture in 1996, Kulhawy 

presented on reliability-based design in foundation engineering and acknowledged a state of 

complacency within the geotechnical engineering community and a sense that existing (and 

“proven”) methods were adequate for carrying out optimal designs (NRC, 1995; Kulhawy, 1996). 

Kulhawy argued for a Reliability-Based Design (RBD) alternative which he described as any 

method that used reliability analysis, explicitly or otherwise. The version Kulhawy advanced at 

this lecture was the calibrated multiple/partial factor format such as the LSD/LRFD design 

approach described in Chapter 4.  In 2000, Whitman discussed organizing and evaluating 

uncertainty in geotechnical engineering and identified four potential uses of probabilistic methods: 

site characterization, design evaluation, decision making, and construction control (Whitman, 

2000); i.e., he did not include direct design as a potential use but he did include design evaluation. 

The perception that current geotechnical design practice produces optimal designs appears 

inconsistent with historical facts. Christian & Baecher (2011) noted the discrepancy, usually by 

two orders of magnitude, between the observed and computed failure rates in geotechnical design 

and identified this discrepancy as the No. 1 unresolved problem in geotechnical risk and reliability.  

The perception of doubt and reluctance described by Whitman and Kulhawy is also present in the 

wider engineering design community as illustrated in the debate of whether “probabilistic design 

should replace safety factors” by Doorn & Hansson (2011). The outcome of this debate was that 

probabilistic risk assessment and safety factor approaches were complementary, rather than 

mutually exclusive. The authors claimed that that “in most applications, uncertainties prevent 
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probabilistic risk assessments from providing an objective probability of failure” as if safety 

factors had objective bases other than historical performance and as if uncertainties were not the 

real basis for probabilistic design. The authors concluded that safety factors were “indispensable 

for dealing with dangers that cannot be assigned meaningful probabilities;” an argument that seems 

to prefer an arbitrary safety factor over assigning some form of probability to poorly understood 

dangers.  It seems from these arguments that the main stumbling block is the unfamiliarity of 

engineers with probabilistic concepts and methods. 

Currently and probably for a few decades to come, geotechnical design practice will 

continue to be based on the semi-probabilistic LSD/LRFD format. It is interesting to recall that 

when Moe (1936) argued against the global factor of safety approach and in favor of using separate 

factors of safety for dead load, live load and material resistance, he pointed out that the single 

factor of safety was not adequate because it had “gradually been found necessary to supplement 

it by statements of special requirements.”  Ironically, this is also a prime limitation of current 

LSD/LRFD design methods; i.e., the use of the calibrated partial factors has to be supplemented 

by conditions on assumed target reliability, variabilities of design inputs, methods by which inputs 

have been estimated, computational models used, etc. In fact, the traditional ASD format offered 

more flexibility as the designer was free to select a global factor of safety, within a relatively wide 

range, to reflect familiarity with the site and his/her judgment. The LSD/LRFD format specifies 

code-mandated partial factors and takes away most flexibility from the designer. 

For similar reasons, Phoon & Ching (2015) wondered if there was “anything better than 

LRFD for simplified geotechnical RBD.” They proposed the Quantile Value Method (QVM) as a 

potential answer to that question (Ching & Phoon, 2011b, 2013). The basic idea of the QVM 

method is to reduce stabilizing random variables, such as shear strength, to a quantile value   and 
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to increase destabilizing random variables, such as load, to a quantile value 1   to reach design 

values for both stabilizing and destabilizing random variables. Parameter   is called a probability 

threshold and is assumed to be constant for both stabilizing and destabilizing variables. Because 

the probability threshold is a quantile value, the procedure is equivalent to applying partial factors 

that are functions of the variable COV’s. However, Ching, Phoon, et al. (2015) showed that the 

QVM method was not robust against variable redundancy and came up with the concept of an 

Equivalent Random Dimension (ERD) whose equation is determined by the code developer 

through a calibration process. Thus, it appears this method is not much better than the LRFD 

framework in terms of designer flexibility and the need to perform calibrations. 

In light of the constraints placed by all of the above methods and the confusion caused by 

multiple factors for different scenarios, applications and industries, breaking free of any such 

factors or calibrations would be a great advantage and a welcome relief. Many favorable 

developments have taken place since 1964 or 1996 such that it is now possible and far simpler to 

use full probabilistic methods, such as direct Monte Carlo or a Monte Carlo version with improved 

sampling and/or Bayesian updating, directly in geotechnical design, Figure 5.1. These 

developments include better understanding of typical ranges and effects of soil variability, 

advances in Bayesian probability methods and the abundant and portable availability of computing 

power. Probabilistic methods calculate risk, complement judgement and provide new insights into 

the design and its critical parameters. They afford the designer great flexibility in design 

assumptions and the opportunity to focus on assessing design input variability.  This chapter 

reviews various reliability-based design methods and covers in more detail the direct reliability-

based design (d-RBD) method which is used in this dissertation. 
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Figure 5.1 Risk: from concepts to evaluation 

 

5.1 Reliability Analysis Methods 

Design methods based on reliability analysis come in various forms and levels of 

complexity and accuracy (Jonkman et al., 2015). There are at least five levels of reliability method 

sophistication where each higher level can be used to calibrate or develop guidance for the levels 

below it. In general, reliability methods leverage, to varying degrees, available knowledge and 

information about the problem or design situation to infer information on design reliability. Thus, 

probability and statistics are the primary tools used in these methods. Many of these methods are 

based on the frequentist’s approach to probability but the Bayesian definition of probability is 

making inroads and has the biggest potential of advancing the field, especially for geotechnical 

design. Leimeister & Kolios (2018) reviewed reliability-based methods for risk analysis as applied 

in the offshore wind industry. They classified these methods into three broad categories: 

qualitative, semi-quantitative and quantitative. Quantitative methods include analytical methods 

which calculate the reliability index (or probability of failure) via analytical estimates such as 

Tayler Series expansion. Stochastic methods achieve the same goals through sampling techniques 
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such as Monte Carlo Simulation. Both analytical and stochastic methods are based on the idea of 

limit states and limit state functions and their primary objective is the calculation of the probability 

of failure and hence the reliability index. Compared to stochastic methods, analytical methods such 

as FORM and FOSM have the advantage of light computational effort. However, they are not as 

accurate because they are based on first order Taylor series expansion approximations of the limit 

state function; in effect, they are based on a linearization, at the mean values of variables, of the 

limit state function which is often nonlinear. Table 5.2 contains a summary of quantitative 

reliability analysis methods. 

Table 5.1 Reliability analysis levels 

Level Description Where/how used 

0 – Deterministic Deterministic values of loads & 

resistance 

Classical ASD/WSD 

I - Semi-probabilistic Characteristic values of loads & 

resistance 

LSD/LRFD, current codes 

II – Approximation Uncertain parameters modeled as random 

variables possibly including cross-

correlations. Moments up to second order 

are used (mean and variance). 

Used to calibrate current 

codes. FORM and FOSM 

are sample Level II 

methods. 

III – Numerical Uncertain parameters modeled through 

joint probability density functions & 

probability of failure determined exactly 

(analytical formulations, numerical 

integration or Monte Carlo simulations).  

RFEM and d-RBD are a 

sample Level III method 

IV- Risk-based Consider Level II or III probability of 

failure and consequence of failure. 

Risk-based: consider 

probability and 

consequences of failure 
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Table 5.2 Summary of quantitative reliability analysis methods 

No. Method name Category Descriptions, pros and cons Example References 

1 Taylor Series 

Methods 

Analytical  FOSM 

 Simple, easy to understand & apply 

 Requires an assumption on the FS PDF 

 Requires 2N+1 calculations of the factor of safety (if an 

equation cannot be derived) 

 Only good for rough estimate; can give non-unique 

solutions. 

 Cornell (1969) 

 Harr (1987) 

 Duncan (2000) 

 Baecher & Christian (2003) 

2 Point Estimate 

Methods (PEM) 

Analytical  FOSM 

 Requires an assumption on the FS PDF 

 Requires 2N calculations of the FS 

 Rosenblueth (1975) 

 Rosenblueth (1981) 

  Zhao & Ono (2000) 

 Christian & Baecher (2002)  

3 Hasofer-Lind 

Methods 

Analytical  FORM, SORM, AFOSM 

 Allows modeling of random variable cross-correlations  

 More accurate than Methods 1 and 2  

 Hasofer & Lind (1974) 

 (Li & Lumb, 1987) 

 Baecher & Christian (2003) 

 Low (2006) 
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Table 5.2 Continued 

No. Method name Category Descriptions, pros and cons Example References 

4 Direct MCS 

Method 

Stochastic  Computationally intensive 

 No assumptions needed other than those related to 

random variables. 

 Robust, unbiased method where the accuracy of 

probability of failure can be improved by more 

sampling. 

 Almost sure convergence (strong law of large numbers)  

 (Baecher & Ingra, 1981) 

 Kalos & Whitlock (2008) 

 Au & Wang (2014) 

5 Kriging Stochastic  More computationally efficient than direct MCS 

 Used effectively for sensitivity analyses 

 Zhang et al. (2015) 

 Wang et al. (2013) 

6 Subset 

simulation, 

MCMC 

Methods, Gibbs 

Sampling, etc. 

Stochastic  Methods are more computationally efficient than direct 

MCS as they make use of Importance Sampling (IS) or 

other sampling schemes, but are less robust; i.e., may 

not converge. 

 Used effectively for sensitivity analyses 

 Subset simulation can be combined with Markov chain 

Monte Carlo (MCMC) methods and neural networks. 

 Au & Wang (2014) 

 Robert & Casella (2011) 

 Giovanis et al. (2010) 
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Table 5.2 Continued 

No. Method name Category Descriptions, pros and cons Example References 

7 Random Finite 

Element Method 

(RFEM) 

Stochastic  Combines the finite element method and random fields 

for proper modeling of spatial variability 

 Can be combined with direct MCS or any of the other 

sampling schemes that improve computational 

efficiency 

 Computationally intensive 

 State-of-the-art in computational probabilistic 

geotechnical analysis 

 Fenton & Griffiths (1993) 

 Fenton & Griffiths (2003) 

 Griffiths & Fenton (2007a) 

 Fenton & Griffiths (2008) 

 Huang et al. (2010) 

8 Bayesian 

Updating & 

Inference 

Analytical 

& 

Stochastic 

 Reduction of parameter variability resulting in 

uncertainty reduction in all methods above (analytical 

or stochastic). 

 Caspeele (2014) 

 Baecher & Christian (2015) 

 Ering & Babu (2017) 

 Wang et al. (2017) 

FORM: First Order Reliability Method, FOSM: First Order Second Moment reliability method. N is the number of random variables. 



144 
 

5.2 Direct Reliability Based Design Method (d-RBD) 

Monte Carlo Simulation (MCS) is a measurement process that involves sampling from a 

population that is described through statistical parameters with pre-defined underlying 

distributions (e.g. Fishman, 1995; Morgan & Henrion, 1999; Kalos & Whitlock, 2008; Kroese et 

al., 2011). The process of sampling is described as simulation or the generation of scenarios.  Each 

generation instance or scenario is termed a realization. Data collected through sampling are 

analyzed using different statistical methods. However, to gain useful knowledge from sampled 

data, the number of realizations needs to be sufficiently high.  Methods involving MCS are used 

in diverse fields such as financial markets as well as risk assessment and management in practically 

any field. 

The Direct Reliability Based Design (d-RBD) method presented in this dissertation is a 

direct MCS process used to obtain, through a single MCS run for each limit state, designs meeting 

predefined reliability criteria for that limit state (Ben-Hassine & Griffiths, 2012). The method is 

general and can be applied to various limit states with different target reliabilities, in which case 

the method can be used as a Direct Reliability Based Design Optimization (d-RBDO) tool. The d-

RBD method is a Level III reliability analysis method (Table 5.1), and as such, it can be used for 

code calibration or development of other semi-probabilistic design procedures. As outlined in 

Chapter 4, target reliability would be different for different limit states and reference periods and 

the method allows the setting of a different reliability target for each limit state. The method is 

versatile and, similar to other probabilistic methods, has the critical feature of enabling the design 

engineer to focus effort on assessing the variability of the key design inputs and to exercise 

judgment in employing different computational models and analysis techniques.  
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5.2.1 Method Details 

In the d-RBD method, design parameters are treated as random variables with predefined 

probability density functions.  MCS is used to generate realizations of a performance function 

corresponding to the limit state under consideration, assumed to be represented as follows:  

  ( , ), 0g b R  X A Q   (5.1) 

where: 

 ( )R  is the computational model or equation for calculating resistance 

 X  is a vector of random variables that make up the equation for calculating resistance 

 Q  is a vector representing random load components; note that for the case of wind turbine 

foundations, the predominant component is the overturning moment. 

 A  is a vector of uniformly distributed discrete random variables representing the potential 

values of the important design decision section dimensions; e.g., foundation diameter 

and/or depth,  

   is model uncertainty which can be modeled as a lognormal random variable with mean 

of 1 and a COV of COV , but is assumed to be deterministic and equal to 1 in these 

analyses, and 

 b  is bias in the resistance model ( )R  and is also assumed to be deterministic and equal to 

1 in these analyses with mean values of resistance random variables taken as the 

characteristic values. 

The realizations of the performance function are obtained by using the generated values of 

the random variables and checking whether failure occurred or not. Failure corresponds to the 
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performance function taking on a value that is less or equal to zero; i.e.,  ( , ), 0g b R  X A Q . 

Depending on the limit state under consideration, failure could mean collapse, due for example to 

bearing capacity failure, or the development of an operational issue such as excessive tilt or low 

foundation stiffness. Statistical analysis of the realization results is carried out using Bayes’ 

theorem to determine the probability of failure conditioned on the design decision parameters for 

each combination of design decision dimensions. The ensuing procedure is effectively a design 

tool that identifies the pool of combinations of design decision dimensions that have acceptable 

probabilities of failure.  Different limit states can be considered through multiple implementations 

of this process, with each implementation resulting in a pool of acceptable designs for that limit 

state. The optimal design for all considered limit states is the lowest cost design that is common to 

all the pools of acceptable designs. The essential steps of the d-RBD procedure are shown in Figure 

5.2. A flow chart for multiple limit states is shown in Figure 5.3, in which nr  is the number of 

realizations and ir  is a realization counter. 

 

 

Figure 5.2 Essential steps in the d-RBD procedure 
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Figure 5.3 d-RBD flowchart 
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5.2.1.1 Problem Definition 

The problem definition step is required for each limit state and it includes: 

 Identification of the failure mode and performance function 

 Selection of the resistance and loading random variables and definition of their 

probability density functions and any cross-correlations 

 Selection of the cross-section dimension values to be considered. These would 

cover the anticipated practical ranges considering construction and cost aspects. 

 Selection of the target reliability index, T , or target probability of failure, T
fp , for 

the limit states under consideration. This choice needs to reflect the consequence 

of failure and the reference period. 

5.2.1.2 Generation of Realizations  

MCS consists of generating a large number of realizations, rn , and evaluating each 

realization using the selected computation model to decide whether the limit state is violated. The 

total number of failure simulations, fn  is determined. The probability of failure for the MCS run 

is: 

 f
f

r

n
p

n
   (5.2) 

The generation of realizations involves generating uniform random samples and using the 

inversion principle to obtain independent and identically distributed (i.i.d.) samples of any 

distribution. The inversion principle provides that a random sample from any CDF 

 ( )F x P X x   can be generated by transforming a uniform random sample. This is because if 
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U  is uniformly distributed between 0 and 1; i.e. (0,1)U U  then the CDF of  1X F U  is 

equal to ( )F x . 

This step also includes incorporating random variable cross-correlations in the generation 

process. This is achieved through Cholesky factorization of the correlation matrix.    

5.2.1.3 Analysis of MCS Results 

For each combination of design decision parameters, in this case for each combination of 

foundation width and depth, the number of violations (failures) is also counted as fBDn  . An 

acceptable combination of design decision parameters is a combination that has an acceptable 

conditional failure probability; namely, its conditional failure probability must be less than the 

target failure probability, tp   

  | , tp Failure B D p   (5.3) 

The conditional probability  | ,p Failure B D   is calculated using Bayes’ Theorem as: 

    
 

, |
| ,

, f

p B D Failure
p Failure B D p

p B D
   (5.4) 

In the above equation, the conditional joint probability of B  and D  given failure, 

 , |p B D Failure , and the probability of the uniformly distributed design decision parameters, 

 ,p B D , are calculated as follows: 

  , | fBD

f

n
p B D Failure

n
   (5.5) 

and 
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   1,
B D

p B D
n n

   (5.6) 

In the above equation, Bn  and Dn  are the numbers of discrete B  and D  values. 

Combining the above definitions into Equation (7.4), the fn  term drops out and the 

conditional probability of failure,  | ,p Failure B D , can be calculated using: 

  | , fBD
B D

r

n
p Failure B D n n

n
   (5.7) 

5.2.1.4 Why the d-RBD Name? 

Because uncertainty is represented explicitly through random variables to use in a 

computational model, without the need for partial factors, and because the method uses a direct 

Monte Carlo process, the procedure is called a direct Reliability-Based Design (d-RBD) method. 

The outlines of the d-RBD approach, whether in regards to its intent or mechanics, have been 

described and used in the literature  (e.g. Honjo, 2011; Wang, 2011; Wang et al., 2011; Fan & 

Liang, 2012; Wang & Cao, 2015). However, it was given different names by different authors. For 

example, Wang (2011) called it the “Expanded RBD” or ERBD and used it for bearing capacity 

design of foundations, while Fan & Liang (2012) labelled it the MCS Based Design (MCSBD) 

method and used it the design of laterally loaded piles. 

One aim of this dissertation is to formalize the d-RBD method and to provide examples of 

its practical applications. The method also lends itself to Performance Based Design (PBD) as the 

target reliability index, T  , or the target probability of failure, T
fp  can be selected to design to 

any target performance. 
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5.2.2 Hypothesis Testing for Parameter Ranking 

Many uncertain load and resistance design parameters form the input to the d-RBD method, 

each with predefined uncertainty parameters. A valuable insight would be to know which uncertain 

parameter has the most or least effect on the probability of failure. Such insight can be obtained 

by statistically comparing, for each parameter, the mean of the parameter for the failed realizations, 

F  , to the mean of the same parameter for the unconditional realizations,   . The statistical 

difference is computed through hypothesis testing where the null hypothesis is 0 : FH    and 

the alternate hypothesis is :A FH    . A measure of the difference is given by a hypothesis test 

statistic, the absolute value of which is HZ , where fn  is the number of failures and   is the 

standard deviation of the parameter for the unconditioned realizations: 

 F
H

f

Z

n

 



   (5.8) 

  This index, which could be described as an “importance index”, has a range of (0, )  

and is computed for each of the random variables. The vector of indices serves to rank all uncertain 

parameters per their effect on the probability of failure. In the resulting ranking, the magnitude of 

the index is not important but what is important is how it compares to indices of the other 

parameters. Thus, it is useful to normalize the vector of indices. Knowing the parameters that have 

a larger impact on probability of failure can serve to focus the uncertainty assessment or 

geotechnical exploration efforts on those parameters. On the other end of the spectrum, parameters 

with the least impact on probability of failure can be treated as deterministic without appreciable 

loss of method accuracy.   
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5.2.3 Method Accuracy 

Increasing the number of realizations is the obvious method for reducing the error of the 

d-RBD MCS process. The improvement of accuracy can be observed through a plot of probability 

of failure versus the number of realizations where large fluctuations of the probability of failure 

converge to a more defined value as the number of realizations increases. Such plots are shown 

for all the limit states considered in this dissertation in subsequent chapters. An important feature 

of the Monte Carlo method is that it has “linear complexity” (Morgan & Henrion, 1999). This 

means that the number of uncertain variables has no bearing on the required number of samples to 

reach a certain output precision or confidence level. The primary factor affecting this precision is 

the sample size; i.e., the number of MC runs. There are many recommendations relative to the 

minimum number of realizations or the required number of realizations as a function of the desired 

accuracy of the probability of failure (Fishman, 1995; Morgan & Henrion, 1999; Fenton & 

Griffiths, 2008). 

As a rough indicator, the required number of realizations should be at least one order of 

magnitude greater than the reciprocal of the target probability level, T
fp  (Robert & Casella, 1999). 

Thus, if there are ddcN  design decision combinations, i.e., possible combinations of design decision 

parameter values, the recommended lowest number of realizations per Robert & Casella (1999), 

minrn , is:  

 min
10 ddc

r T
f

Nn
p

   (5.9) 

Another estimate of the minimum number of realizations is proposed by Ang & Tang 

(2007) as: 
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 min 2

1 1 ddcT
f

r
T

N
p

n
COV

 
  

    (5.10) 

where TCOV  is the target coefficient of variation of the target probability of failure. In both of the 

above two equations, if there are no design decision variables; i.e., if the reliability of a particular 

design is being assessed, the suggested number of realizations is as indicated in the equations with 

1ddcN  . 

While increasing the number of realizations is the obvious means for reducing the error, it 

comes at additional computational cost. There are more efficient alternatives such as the Markov 

Chain Monte Carlo (MCMC) algorithms (Robert & Casella, 2011), subset simulation (Au & 

Wang, 2014) and Bayesian updating. These alternatives keep the computational cost at 

manageable levels and deliver improved accuracy. These alternatives are beyond the scope of this 

dissertation. 

5.2.4 d-RBD Advantages 

In the d-RBD design method, uncertainty is modeled separately for each load and/or 

material parameter and the designer has full flexibility to select an appropriate computational 

model, random and deterministic parameters, variable probability density functions, variable 

uncertainties and variable cross-correlations. Therefore, engineering judgment can be applied at 

any step of the process. Duncan & Sleep (2017) emphasize the importance of judgement by stating 

that “judgement and experience are essential prerequisites for meaningful assessment of 

geotechnical reliability.” This section enumerates the different ways the d-RBD method retains 

flexibility and provides room for the engineer to exercise judgement. 
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5.2.4.1 Freedom to Adjust Target Reliability 

The target reliability index is selected based on tolerable risk associated with a failure 

event. In LSD/LRFD codes, notional target reliability is hard coded through a process of partial 

factor calibration, making such codes limited in application to the limit states covered in the codes 

and to conditions assumed in the calibration process. With the d-RBD method, the designer can 

set the target reliability to match reliability levels intended by any of these LSD/LRFD standards. 

In addition, the designer can verify additional limit states not included in standards and, if desired, 

can select a different target reliability index; e.g., in a performance-based design (PBD) context. 

5.2.4.2 Factor-free Approach 

With the d-RBD method, there are no partial factors on loads or resistances and no factors 

to account for consequence of failure, or any other design consideration. All such considerations 

can be embedded in adjusting the probability of failure which produces the desired target 

reliability. 

5.2.4.3 Characteristic Value Free Approach  

Today’s standards define characteristic values of loads and resistances differently. Some 

define the characteristic value as the mean, others specify a particular “cautious estimate of the 

mean” be used, while others call for the use of lower or higher fractile whichever is more 

conservative. Such basic differences make it difficult to navigate codes and are partly responsible 

for the differences in calibrated partial factors and the ensuing confusion. With the d-RBD 

approach, there is no need to define characteristic values. 

5.2.4.4 Freedom to Select an Appropriate Computational Model 

Some design standards specify different partial resistance factors for different assumptions 

made in computational and transformation models, sometimes leaving out specific models and 
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always neglecting models that are yet to come (future models). With the d-RBD method, the 

computational model can be arbitrary and is part of the problem definition. Furthermore, the 

computation model can be as complex as necessary without adding complexity to the d-RBD 

process, except possibly additional computational cost.  

5.2.4.5 Freedom to Define Random Variable Distribution and Uncertainty 

The d-RBD method allows designers to select the random variables, their probability 

distributions and their uncertainties; in fact, these are the basic inputs of the method. This affords 

the designer the opportunity to account for local knowledge and site-specific uncertainty which is 

often ignored by pre-packaged LSD/LRFD based design standards. 

5.2.4.6 Ability to Account for Variable Cross-correlations 

Variable cross-correlations, such as the positive correlation between soil unit weight and 

shear modulus or potential correlation between friction and cohesion, can be accounted for through 

a covariance matrix. This feature is an opportunity to exercise judgement and reap benefits based 

on rational analysis. 

5.2.4.7 Ability to Compare Results Using Different Computational Models 

In Section 3.1.2.3, model uncertainty was presented as a potentially frivolous concern. The 

designer is supposed to be able to choose the computational model that is appropriate for the limit 

state and its assumptions. However, if necessary or in doubt, the d-RBD procedure enables the 

designer to investigate different computational models and select the more onerous results. This is 

also applicable if there are multiple equally valid computational models for a given limit state. An 

obvious example is bearing capacity of foundations over fine grained soils which is typically 

evaluated for drained and undrained conditions, hence the two different computational models. 

The range of designs for the various computational models can also serve to bound the uncertainty 
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associated with the selection of the computational model, if one admits the existence of model 

uncertainty. 

5.2.4.8 Manageable Computational Effort 

The computational effort depends on the number of random variables and the magnitude 

of probability of failure. For rare events; i.e., where the probability of failure is very low, the 

required number of realizations is often in the millions. Even though many MCS realizations are 

often needed to compute probability of failure with acceptable accuracy, the calculations are 

manageable on everyday personal computers. For typical limit state equations involving about half 

a dozen randomized design decision variables and target probability of failure of 10-3, each MCS 

takes at most a few minutes. However, this number can be drastically reduced through Bayesian 

updating, subset simulation, neural networks and other techniques described in Section 5.2.3.   

Thus, adopting d-RBD as an everyday design tool is computationally possible and can be very 

beneficial since designers would spend most of their effort focusing on understanding and 

assessing the variability of the parameters impacting their designs. 

5.2.4.9 Reliability-based Design Optimization (RBDO) 

When multiple limit states are verified, and the optimal design is selected from the 

intersection of all pools of acceptable designs, the d-RBD method turns into a reliability-based 

design optimization tool.  

5.2.5 d-RBD Limitations 

Even though d-RBD has many advantages, it does have a few challenges and limitations.  

The main challenge is that many designers only have a basic appreciation of probabilistic concepts 

or understanding of design parameter variability. Without these critical skills, the method may not 
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be adopted as a routine design tool soon. Engineering curricula, especially in geotechnical 

engineering where designers deal with high material variability, should include a stronger focus 

on probabilistic tools and uncertainty assessments to better equip future engineers with the proper 

knowledge. 

Another limitation, which is also common to almost all other methods, is the inability to 

model spatial variability. The most rigorous method for modeling spatial variability is through 

random fields and stochastic finite element methods such as the random finite element method 

(RFEM) (Fenton & Griffiths, 2007; Griffiths & Fenton, 2007b). However, there are ongoing 

efforts to incorporate the effects of special variability, at least approximately, through “spatially 

averaged” or “equivalent” parameters for soil masses in a process called homogenization (Ching 

& Phoon, 2011a, 2012; Griffiths et al., 2013; Ching, Hu, et al., 2015). 

5.2.6 Implementation Tools 

There are numerous computational tools that can be used to implement the d-RBD 

procedure. Almost any computer programming language can be used. However, popular 

calculation and data processing packages such as Microsoft Excel (Microsoft, 2018), MATLAB 

(MathWorks, 2016) or Mathcad (PTC, 2018) would be practical and readily accessible choices 

that do not require much programming. Even though the investigations carried out in this 

dissertation are performed using MATLAB, Microsoft Excel would be a more accessible choice 

since it resides on almost every personal computer, laptop or tablet. Microsoft Excel has many 

built-in tools for data analysis, manipulation and rendering. Excel also comes equipped with Visual 

Basic for Applications (VBA), a Basic programming language enhanced over the years with 

countless built-in functions and object-oriented tools. An efficient approach to implementing d-

RBD in Excel is to use datasheets to enter inputs and Excel VBA to generate Monte Carlo 
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Simulations and perform the statistical analysis of the results associated with d-RBD. Modern day 

applications can also be developed for tablets and smart phones for ultimate portability. 
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CHAPTER 6   

FOUNDATION TILT AND ROTATIONAL STIFFNESS 

This chapter illustrates use of the d-RBD method for verifying the tilt and rotational 

stiffness serviceability limit states of shallow wind turbine foundations. The method is also used 

to investigate effects of uncertainty as reflected in random variable COV’s and effects of random 

variable cross-correlations. The deterministic models or equations for tilt and stiffness presented 

in Chapter 2 are used in this chapter where parameters are randomized. 

6.1 Foundation Tilt 

The tilt limit state is verified using theoretical equation (2.14) and by defining the 

performance function as:  

  
2

max 3
1tan 0g M I
EB 
 

     (6.1) 

where: 

 max  is the maximum tilt angle, taken equal to 0.17deg   

   is Poisson’s ratio 

 E  is strain-level corrected Young’s modulus, computed as  2 1E G   

 G  is strain-level corrected shear modulus computed as 0G G  

 0G  is the zero-strain shear modulus computed from 2
0 sG V  in which   is the in-situ 

soil density and sV  is shear wave velocity 
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   is the shear modulus ratio 
0

1

1
ref

G
G 




 
 

   
 

 in which   is the curvature parameter, 

  is the shear strain level and ref  is the reference shear strain computed as max

0
ref G

   

where max  is the maximum shear stress or the shear strength of the soil 

 B  is foundation diameter 

 M  is the applied load, selected at the S3 level per IEC61400-6 recommendation (IEC, 

2016), and 

 I  is a correction factor 

In the computation of the performance function, the intermediate quantities can be 

calculated using the relationships mentioned above and then plugged into Equation (6.1) or, 

alternatively, it can be computed directly as: 

  
 

2

max

max 2 3

1 1

tan 0
2

s

s

V

g M I
V B











  
    
        (6.2) 

Any or all of the parameters in the above equation can be assumed to be deterministic or 

random with assumed PDF’s. In this analysis, loads and material properties are selected to match 

those of the example foundation analyzed in Section 2.9 using STAAD finite element program. 

That example foundation is a realistic scenario for an 80-meter hub height wind turbine.  COV 

values are selected based on medium variability suggested in Table 3.8.  The adopted parameter 

assumptions are shown in Table 6.1.  
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Table 6.1 Random variables for tilt limit state investigations 

Parameter Variable PDF’s Notes 

Dist

. 

Mean COV 

Med. High  

Applied moment ( Nm ) M  LN S3: 

2∙107 

0.20 0.25 Annual maximum load 

effect at S3 level. 

In-situ soil density ( 3
kg
m

) 
  NR 1750 0.05 0.10  

Poisson’s ratio   NR 0.35 0.05 0.10  

Shear wave velocity ( m
s

) sV  LN 200 0.40 0.60  

Shear strain level   LN 5∙10-4 0.20 0.30 The shear modulus ratio 

(at mean values) is 0.70, 

which is in line with 

current practice. 

Shear strength ( Pa ) max LN 105 0.25 0.50  

Shear modulus 

degradation curvature 

parameter 

  NR 0.90 0.10 0.20 0.9   is close to the 

(Darendeli, 2001) value. 

Correction factor I  NR 4.16 0.05 0.10  

Foundation diameter ( m ) B   NA 17.0 NA NA Design decision variable. 

Probability of failure fp    7∙10-6 2∙10-3  

Reliability index      4.4 2.9  

Notes: 

 Maximum allowed tilt is max 0.17deg    

 Target reliability is as outlined in Table 4.11; i.e. 1.7T  ( 0.035T
fp  ) for 1-year 

reference period and 1.0T   ( 0.165T
fp  ) for 50-year reference period. 
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6.1.1 Reliability of Foundation – Tilt Limit State 

Adopting the random variables and their associated PDF’s listed in Table 6.1, the 

probability of failure; i.e., probability of exceeding the tilt limit of 0.17deg  is computed using 

MCS for a foundation diameter of 17B m . The tilt angle calculated deterministically using mean 

values of random variables is 0.0063 degree, which is much smaller than the limit of 0.17 degree.  

As shown in Figure 6.1 and Figure 6.2, the probability of failure converges, as the number of 

realizations is increased, to about 67 10 ( 4.4)fp     for the medium variability case and 

32 10 ( 2.9)fp     for the high variability case. The probability of failure for either case is 

much lower than the target probability of failure of 0.035 ( 1.7)T
f Tp    for 1-year reference 

period serviceability limit states. 

Apparently, other design requirements such as requiring positive contact pressure under 

the S3 level loading or other more onerous limit states make the tilt limit state unlikely to govern. 

The formulation used in this exercise is for a surface foundation and it ignores any potential 

beneficial effects of embedment or vertical loads. The formulation is based on elasticity theory 

and ignores other sources of potential deformation. Furthermore, it is reasonable to expect non-

uniform ground conditions under the foundation which add to tilt from elastic deformation. 

Therefore, some level of conservatism is warranted. However, this reliability based exercise shows 

that either the tilt limit is conservative, as inferred from the discussion in Sections 2.5.1 and 2.8.2, 

or the current guidance recommendations are conservative. 
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Figure 6.1 Tilt failure probability – 17mB  , medium parameter variability 

 

  

Figure 6.2 Tilt failure probability – 17mB  , high parameter variability 

 

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

5.0E+03 5.0E+04 5.0E+05 5.0E+06

Pr
ob

ab
ili

ty
 o

f f
ai

lu
re

, p
f

Number of realizations, nr

Medium variability, β=4.3

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

Pr
ob

ab
ili

ty
 o

f f
ai

lu
re

, p
f

Number of realizations, nr

High variability, β=2.92



164 
 

6.1.2 Parameter Ranking – Tilt Limit State 

Even though the reliability analysis described in the previous section shows that the tilt 

limit state is not governing, it is useful to know how the random variables in the adopted limit state 

function rank in terms of importance. The hypothesis testing procedure described in Section 5.2.2 

is used for this purpose and the resulting normalized importance indices are shown in Table 6.2 

and shown as a pie chart in Figure 6.3Error! Reference source not found.. As can be noted from 

this table and chart, shear wave velocity and applied moment have the greatest impact followed to 

much lesser extent by the rest of the parameters where the shear strain level seems to have the least 

impact. Such information can be useful in deciding where effort should be focused to reduce 

uncertainty. Such a decision would be particularly important if this limit state were governing the 

design. 

 

Table 6.2 Random variable ranking for tilt limit state 

Variability  sV  M    I    
max      

Medium Rank 1 2 3 4 5 6 7 8 

Index 0.838 0.509 0.114 0.106 0.099 0.059 0.029 0.009 

High Rank 1 2 5 3 4 7 6 8 

Index 0.853 0.456 0.167 0.163 0.085 0.040 0.030 0.019 
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(a) Medium variability 

 

(b) High variability 

 

Figure 6.3 Tilt limit state parameter ranking, 17mB    

 

6.2 Rotational Stiffness 

For the rotational stiffness limit state, both the dynamic and static stiffness should be verified 

as recommended in IEC61400-6 (IEC, 2016). Recall that this draft guidance recommends the 

following two verifications be performed: 

1. Dynamic stiffness should be verified using zero strain moduli at the S3 load level, 

and 

2. Static stiffness should be verified at the S1 load level using moduli that are adjusted 

for strain level and accounting for any reduction in bearing area if that occurs at this 

load level (which is likely to occur). 

Vs M ν Iθ ρ τmax α γ Vs M Iθ ρ ν α τmax γ
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Making use of Equation (2.25), the performance function for both of these verifications is 

of the form: 

 
3

min min
8 1 2 1 0.7 1 0

3(1 ) 6r
b b

GR D D Rg K K K
R H H

                 
  (6.3) 

where: 

 minK  is the minimum dynamic or static rotational (rocking) stiffness, as the case may be, 

specified by the wind turbine manufacturer, 

 R  and D  are foundation radius and depth, respectively, where R  is a reduced dimension 

to account for gapping for the static stiffness verification, in which case it can be taken as 

2
effbR   (IEC, 2016), 

 G  is the shear modulus equal to 0G  for the dynamic stiffness check and reduced for the 

appropriate strain level for the static stiffness check, and 

 bH  is distance from bottom of foundation to firm bedrock, if applicable. 

In these investigations, we consider the case where bH  is too large to influence stiffness 

(deep bedrock taken at around 200m ) and the case where bedrock is at a depth of half foundation 

width ( 8.5mbH R  ) to investigate the effect of uncertainty in bedrock depth. As in the tilt limit 

state, we also consider the cases of medium and high parameter uncertainty. 

6.2.1 Dynamic Stiffness Verification 

At the S3 load level, positive contact pressure is maintained at the foundation-subgrade 

interface. Assuming the foundation is sized to ensure positive contact is maintained considering 
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the uncertainty of the load, the performance function is rewritten in terms of all the applicable 

random variables listed in Table 6.3 as follows: 

 
2 3

dmin
8 1 2 1 0.7 1 0
3(1 ) 6

s

b b

V R D D Rg K
R H H




               
  (6.4) 

6.2.1.1 Case of Deep Bedrock 

Monte Carlo simulations were performed for the case of deep or non-existent bedrock, and 

for the cases of medium and high variability. As shown in Figure 6.4, for the medium variability 

case, probability of failure converges to 0.018, 2.1fp    which is comfortably more reliable 

than the target of 0.165, 1.0T
f Tp   . The same is true but not by as large of a margin for the 

high variability case. For the high variability case, the probability of failure converges to 

0.096fp  . The corresponding reliability is 1.27   and only slightly larger than the target of 

1.0. In this case, a design that is largely acceptable for medium variability is barely acceptable 

when variability is high. This finding illustrates how risk can be reduced either through reducing 

uncertainty or through adopting a more robust design if the high parameter variability is confirmed. 

Both of these outcomes can be confirmed through improved certainty relating to parameter 

variability. Parameter importance ranking is a useful tool to focus uncertainty reduction efforts on 

the important variables. The resulting parameter rankings is shown in Figure 6.5 for both the 

medium and high variability cases. It is no surprise that the design is most sensitive to shear wave 

velocity. 
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Table 6.3 Random variables for dynamic stiffness investigations 

Variable Dist. Mean COV  Notes 

Medium High 

Density  3
kg

m   
   NR 1750 0.05 0.10  

Poisson’s ratio    LN 0.35 0.05 0.10  

Shear wave velocity  m
s   sV   LN 200 0.40 0.60  

Depth to bedrock  m   bH LN 200, 

8.5 

0.30 0.70  

Foundation radius  m   R   NA 8.5 NA NA Design decision variable 

Foundation depth  m   D   NA 2.8 NA NA Design decision variable 

Probability of failure fp   0.018 0.097  

Reliability index    2.1 1.3  

Notes: 

 Minimum dynamic stiffness is 10
dmin

J5 10 radK     

 Target probability of failure (and reliability index) as outlined in Table 4.11; i.e. 1.7T 

( 0.035T
fp  ) for 1-year reference period and 1.0T   ( 0.165T

fp  ) for 50-year 

reference period 

 

 

Table 6.4 Dynamic stiffness parameter importance ranking – deep bedrock 

Variable sV      

Rank 1 2 3 

Index – Medium Variability 0.9935 0.0969 0.0604 

Index – High Variability 0.9868 0.1440 0.0739 
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Figure 6.4 Dynamic stiffness probability of failure – deep bedrock 

 

 

(a) Medium variability 

 

(b) High variability 

 

Figure 6.5 Dynamic stiffness parameter ranking - deep bedrock 
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6.2.1.2 Case of Bedrock within Zone of Influence 

The case of bedrock within a depth of influence is investigated to assess the importance of 

accurate bedrock depth characterization when bedrock or a significantly stiffer stratum exists 

within a depth that may affect foundation stiffness. Fortunately, depth to bedrock is not too difficult 

to ascertain using geophysical or drilling explorations. During preliminary stages of a project, the 

depth to such a stratum may need to be established to a high level of confidence at every turbine 

location. To investigate this question, an arbitrary mean depth of one half the foundation width (or 

diameter) is selected and is treated as a random variable. The results for medium and high 

variability cases are shown in Figure 6.6. Table 6.5 shows reliability comparisons for the different 

scenarios. It should be noted that, as might be expected, having a firm stratum or bedrock within 

the depth of influence lowers the probability of foundation stiffness failure. This is true for the 

medium variability case. However, for the high variability case, uncertainty in the depth to bedrock 

actually lowers reliability when bedrock is within zone of influence. This result makes the case for 

establishing depth to bedrock with a high degree of certainty. Cost-effective geophysical surveys 

should ideally be conducted at every turbine location as early as possible during the project 

development phase.    

 

Table 6.5 Dynamic stiffness reliability comparisons 

 Medium Variability High Variability 

Deep bedrock 0.018, 2.1fp    0.096, 1.3fp    

Bedrock within depth of influence 0.005, 2.7fp    0.045, 1.6fp     
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Figure 6.6 Dynamic stiffness failure probability – bedrock within influence depth  

 

Parameter rankings for the case where bedrock is within depth of influence are shown in 

Table 6.6 and Figure 6.7. It is telling to notice that while shear wave velocity is still the most 

important parameter, the variability in depth to bedrock is more important than that of soil density 

or Poisson’s ratio. 

  

Table 6.6 Dynamic stiffness parameter ranking – bedrock within depth of influence 

Variable sV  bH       

Rank 1 2 3 4 

Index – Medium Variability 0.9711 0.2062 0.1075 0.0537 

Index – High Variability 0.9443 0.2803 0.1512 0.0832 
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(a) Medium variability 

 

(b) High variability 

 

Figure 6.7 Dynamic stiffness parameter ranking – bedrock within influence depth 

 

6.2.2 Static Stiffness Verification 

For the static stiffness, after substituting into Equation (6.3) the relationships for shear 

modulus reduction, shear wave velocity and 2
effb  for R , the following performance function can 

be obtained: 

 
2 3

smin
2

max

1 4 1 0.7 1 0
12

3(1 ) 1

s eff eff

eff b bs

V b bD Dg K
b H HV








   
                    

   

  (6.5) 

Table 6.7 lists all the random variables and the associated PDF assumptions for medium 

and high variability. The effective dimension, effb , is obtained using the DNV effective area 

approach described in Section 2.7.3 based on the applied moment M , modeled as a random 

Vs Hb ρ ν Vs Hb ρ ν
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variable, corresponding to the S1 loading level. The computation of the effective dimension 

involves computing the equivalent vertical loading which includes the weight of turbine, 

foundation backfill and foundation concrete. Deterministic quantities provided in Table 2.3 are 

assumed in the computation of the total vertical loading. As in the dynamic stiffness case, the effect 

of bedrock within the depth of influence on static stiffness is investigated, in addition to the case 

of deep bedrock.  

6.2.2.1 Case of Deep Bedrock 

For the case of deep bedrock, the static rocking stiffness MCS converges to a probability 

of failure of 0.046 ( 1.61  ) for medium variability and 0.150 ( 1.06  ) for high variability, 

Figure 6.8. Both are acceptable, but the high variability case is right at the target reliability of 1.0. 

As in the case of dynamic stiffness, shear wave velocity and the moment loading are the driving 

parameters for design reliability, see Table 6.8 and Figure 6.8. 

6.2.2.2 Case of Bedrock within Zone of Influence 

MCS results for the case of bedrock within a depth of influence, taken here as random 

variable with a mean equal to foundation radius, are shown in Figure 6.10. Parameter importance 

ranking is shown in Table 6.9 and Figure 6.11. It should be noted here that depth to bedrock comes 

in third place, ranking higher than all other parameters with the exception of shear wave velocity 

and overturning moment.   As expected, when bedrock is within a depth of influence, we obtain 

better reliabilities than for the case of deep bedrock, Table 6.10. However, the reliability 

improvement is more pronounced for the case of medium variability (compared to high variability 

case).  
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Table 6.7 Random variables for static stiffness investigations 

Variable Dist. Mean COV  Notes 

Medium High 

Moment  J   M   LN 5∙107 0.20 0.25 S1 load level, typically 

50-year reference period 

Density  3
kg

m  
   NR 1750 0.05 0.10  

Poisson’s ratio    NR 0.35 0.05 0.10  

Shear strength  Pa   max  LN 1∙105 0.25 0.50  

Shear wave velocity 

 m
s  

sV   LN 200 0.40 0.60  

Shear strain    LN 5∙10-4 0.20 0.30  

Curvature parameter    NR 0.90 0.10 0.20 Per MKZ formulation 

Depth to bedrock (m)  H   LN 200, 

8.5 

0.30 0.60  

Foundation diameter (m)  B   NA 17.0 NA NA Design decision variable 

Foundation depth (m)  D   NA 2.8 NA NA Design decision variable 

Notes: 

 Minimum dynamic stiffness is 10
smin

J1 10 radK     

 Target probability of failure (and reliability index) as outlined in Table 4.11; i.e. 1.7T 

( 0.035T
fp  ) for 1-year reference period and 1.0T   ( 0.165T

fp  ) for 50-year 

reference period. 
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Figure 6.8 Static rocking stiffness failure probability - deep bedrock case 

 

 

Table 6.8 Parameter importance ranking for static rocking stiffness - deep bedrock 

Variability  sV  M     max        

Medium Rank 1 2 3 4 5 6 7 

Index 0.707 0.710 0.063 0.043 0.039 0.034 0.032 

High Rank 1 2 3 5 4 6 7 

Index 0.766 0.627 0.099 0.056 0.058 0.048 0.044 
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(a) Medium variability 

 

(b) High variability 

 

Figure 6.9 Parameter importance ranking for static rocking stiffness – deep bedrock 

 

 

Figure 6.10 Static stiffness failure probability - bedrock within influence depth 
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Table 6.9 Parameter ranking for static rocking stiffness - shallow bedrock 

Variability  sV  M  bH           max    

Medium Rank 2 1 3 4 6 7 5 8 

Index 0.647 0.750 0.104 0.060 0.035 0.026 0.037 0.024 

High Rank 1 2 3 5 4 6 7 8 

Index 0.689 0.633 0.326 0.091 0.061 0.046 0.044 0.039 

 

 

 

(a) Medium variability 

 

(b) High variability 

 

Figure 6.11 Parameter importance ranking for static rocking stiffness 

 

 

Vs M Hb γ ν α τmax ρ Vs M Hb γ ν α τmax ρ
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Table 6.10 Static stiffness reliability comparisons 

 Medium Variability High Variability 

Deep bedrock 0.047, 1.6fp    0.150, 1.06fp    

Bedrock within depth of influence 0.023, 1.96fp    0.131, 1.12fp     

Note: 

 Target probability of failure (and reliability index) as outlined in Table 4.11; i.e. 

1.7T  ( 0.035T
fp  ) for 1-year reference period and 1.0T   ( 0.165T

fp  ) for 50-

year reference period. 
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CHAPTER 7   

BEARING CAPACITY UNDER COMBINED LOADING 

In this chapter, the bearing capacity ultimate limit state is investigated for drained 

conditions, per Equation (2.30), and for undrained conditions, per Equation (2.31), both using the 

effective area approach. The investigation adopts the generally accepted formulation for effective 

dimensions for circular foundations recommended by DNV (DNV/Risø, 2002). The generalized 

equation for computing ultimate bearing capacity, ultq  ; i.e., Equation (2.30) for drained conditions 

or Equation (2.31) for undrained conditions, is used to define the performance function as follows: 

 0ult
eff

Vg q
A

     (7.1) 

7.1 Drained Bearing Capacity 

Classical effective stress analysis assumptions apply when the effects of porewater pressure 

can be measured such as for granular soil deposits or when the loading rate allows for pore water 

pressure dissipation. For wind turbine foundations, loading rate is such that undrained conditions 

should be considered for bearing capacity verification whenever fine-grained soils are within the 

depth of influence under the foundation. For drained conditions, the generalized bearing capacity 

equation; Equation (2.30), is used to define the performance function: 

 0
1 0
2c c c c q q q q eff

eff

Vg c N s d i q N s d i b N s d i
A           (7.2) 

 Variables that can be randomized and their associated PDF’s are listed in Table 7.1 for 

“medium” and “high” variability assumptions. Effective area dimensions and bearing capacity 
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correction factors are computed using the DNV method described in Section. 2.7.2. The resulting 

probability of failure and reliability index for each variability level are also listed in Table 7.1. 

 

Table 7.1 Drained bearing capacity random variables 

Variable Dist. Mean COV Notes 

Medium High 

Moment  J   M   LN 5.0∙107 0.20 0.25 Governing S1-level 

loading. Typically, 

annual probability. 
Horizontal  N   H   LN 6.6∙105 0.20 0.25 

Effective friction 

angle  deg   

    NR 30.0 0.08 0.12 Sands 

LN 25.0 0.30 0.45 Clays and silts 

Effective cohesion 

 Pa   

c   LN 0.0 NA NA Sands 

LN 5.0∙104 0.20 0.30 Clays and silts 

Effective soil unit 

weight  3
N

m   

e   NR 17000 0.05 0.10  

Foundation diameter 

 m   

B   NA 17.0 NA NA Design decision 

variable 

Foundation depth 

 m  

D   NA 2.8 NA NA Design decision 

variable 

Probability of failure  fp  8.4∙10-6 3.3∙10-4  

Reliability index   4.25 3.34  

Notes: 

Target reliability as adopted in this dissertation per Table 4.11 considering the reference period 

of the load case: 

 For 50-year reference period: 2.0T   or 22 10T
fp     

 For 1-year reference period: 3.3T   or 45 10T
fp     
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Probability of failure convergence plots are shown in Figure 7.1. As can be noted, the 

design meets the target reliability index of 3.3 even with the assumption of high variability. If 

variability can be reduced to the “medium” level, the design reliability index is 4.24 which far 

exceeds the target reliability. 

 

 

Figure 7.1 Drained bearing capacity probability of failure 

      

Parameter importance ranking is shown in Table 7.2 in the form normalized importance 

indices for both medium and high variability cases. The same information is illustrated in Figure 

7.2. The pie charts show that there are essentially three important variables governing the 

undrained bearing capacity limit state: overturning moment, effective friction angle and effective 
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cohesion. They also show that when uncertainty is high, the variability of the governing parameters 

can “drown out” the less important parameters and alter their cross-parameter importance 

proportions as a function of their relative variabilities. Thus, driving parameters with higher 

variability are more important than similar parameters with lower variability.  

.  

Table 7.2 Random variable ranking - drained bearing capacity 

Variability Variable M  H  e     c  

Medium Rank 1 2 3 5 4 

Index 0.9848 0.0165 0.0178 0.1578 0.0686 

High Rank 1 4 2 3 5 

Index 0.8668 0.0011 0.0093 0.4732 0.1573 

 

 

(a) Medium variability 

 

(b) High variability 

 

Figure 7.2 Importance ranking for drained bearing capacity 

M φ' c' γ' H M φ' c' γ' H
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7.2 Undrained Bearing Capacity  

The performance function makes use of the generalized bearing capacity equation for 

undrained conditions given in Equation (2.31), namely: 

 0 0 0 0
0 0u c c c c

eff

Vg s N s d i q
A

      (7.3) 

Effective dimensions per the DNV method are used in the evaluation as before. 

Substituting these effective dimensions and the expressions for the other terms, the following 

expression for the undrained bearing capacity performance function is obtained: 

 2.57 1 0.2 1 1 0eff
u t

eff eff u eff

b H Vg s D
l A s A


  

            
  (7.4) 

 In the undrained  0   case, three levels of variability are assumed (low, medium and 

high). The random variables and their associated variability assumptions are shown in Table 7.3. 

Figure 7.3 shows probability of failure convergence for the three variability cases. The resulting 

probabilities of failures indicate that only the low and medium variability cases meet the target 

reliability index of 3.3. This example illustrates the great impact of design parameter variability 

on the reliability of a design. This is especially true when there are only a few driving parameters 

such as in this case where parameter importance ranking, shown in Table 7.4 indicates very strong 

dominance of the undrained bearing capacity limit state by the applied moment followed by 

followed by the undrained shear strength. The pie charts in Figure 7.4 illustrate the proportions 

and highlight the “drowning out” effect of the least important parameters by the more important 

ones. In fact, in this case, the total unit weight and the horizontal load component could be treated 

as deterministic variables without changing the results of the reliability analysis. 



184 
 

Table 7.3 Undrained bearing capacity random variables 

Variable Dist. Mean COV Notes 

Low Medium High 

Moment  J   M  LN 5.0∙107 0.15 0.20 0.25 Governing S1-level 

loading. Typically, 

annual probability. 
Horizontal  N   H  LN 6.6∙105 0.15 0.20 0.25 

Undrained shear 

strength  Pa   us  LN 1.0∙105 0.15 0.25 0.40 
 

Total unit of soil 

 3
N

m   t   NR 17000 0.03 0.05 0.10 
 

Foundation 

diameter  m   
B  NA 17.0 NA NA NA 

Design decision 

variable 

Foundation depth 

 m   
D  NA 2.8 NA NA NA 

Design decision 

variable 

Probability of 

failure 
fp    

2.5∙10-

5 
0.0035 0.022 

 

Reliability index,      3.98 2.76 1.97  

Notes: 

Target reliability as adopted in this dissertation per Table 4.11 considering the reference period 

of the load case: 

 For 50-year reference period: 2.0T   or 22 10T
fp     

 For 1-year reference period: 3.3T   or 45 10T
fp     
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Figure 7.3 Undrained bearing capacity failure probability 

 

 

Table 7.4 Random variable ranking - undrained bearing capacity 

Variability Variable M  us  H  t  

Low Rank 1 2 3 4 

Index 0.9911 0.1311 0.0196 0.0082 

Medium Rank 1 2 3 4 

Index 0.9872 0.1593 0.0060 0.0044 

High Rank 1 2 3 4 

Index 0.9761 0.2168 0.0113 0.0108 
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(a) Low variability 

 

(b) Medium variability 

  

(c) High variability 

  
 

Figure 7.4 Parameter importance ranking for undrained bearing capacity 
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CHAPTER 8   

CONCLUSIONS AND FUTURE WORK 

A novel probabilistic design methodology, called d-RBD, is presented in this dissertation. 

The methodology is free of partial safety factors and is well-suited to geotechnical design problems 

where design inputs are characteristically more variable and partial safety factors typically fail to 

cover the common ranges of variability of design inputs. Compared to state-of-practice procedures, 

the d-RBD method is shown in this dissertation to result in safe yet more economical designs and 

to produce designs meeting target reliability and optimized for site conditions. The d-RBD method 

was used in this dissertation to verify several wind turbine foundation design limit states and to 

identify the important design variables affecting those limit states. Knowledge of the important 

design variables is useful for optimal allocation of geotechnical investigation funds. When the 

most cost-effective design is selected from the intersection of the pools of acceptable designs 

obtained for the different limit states under consideration, the d-RBD becomes a direct reliability-

based design optimization (d-RBDO) tool. This chapter summarizes the conclusions of the d-RBD 

application to the three limit states that were investigated and discusses opportunities to improve 

the scope and efficiency of the d-RBD process. The implementation of the d-RBD method is 

achieved using MATLAB. The source code of this implementation is included as Appendix B. 

8.1 Conclusions 

In this dissertation, the reliability associated with three limit states pertinent to the design 

of shallow wind turbine foundations was assessed. The three limit states are: tilt, rocking stiffness 

and bearing capacity. A gravity-base foundation, sized per common industry practice for a typical 

80-meter hub height turbine, was used as a reference example. The foundation was first analyzed 

using a finite element package that is able to model subgrade stiffness and development of zero-



188 
 

pressure zone in response to combined loading. Industry guidelines were followed in sizing the 

foundation. These methods resulted in a foundation that is 17 meters in diameter and 2.8 meters 

deep. The d-RBD method was then used to assess the reliability of the design assuming different 

levels of design parameter variability. The COV levels (low, medium and high) were estimated 

based on published ranges. The results of this assessment, as well as the most influential design 

parameters, are summarized in Table 8.1 and show that the design has acceptable reliability for 

low and medium design input variability but has inadequate reliability for the high input variability 

case. Thus, the design is optimal for medium or better variability. 

This result can be obtained in one single run of the d-RBD method as implemented in the 

MATLAB code shown in Appendix B and provided in Appendix C. In this run, we instruct the 

program to consider all five limits states and to evaluate six foundation diameters (15, 16, 17, 18, 

19 and 20 meters) and four foundation depths (2.8, 2.9, 3.0 and 3.1 meters); i.e., twenty-four 

combinations of foundation diameter and depth. The main simulation parameters are shown in 

Figure 8.1 and the generated possible geometries are shown in Figure 8.2. Foundation depths are 

obtained by maintaining the middle thickness constant and varying the pedestal height. The main 

simulation parameters specified at the start of the program include the diameter and depth ranges, 

the target SLS and ULS reliability indices, and the desired COV for the target probability of failure. 

A high probability of failure COV; e.g., 0.30 to 0.4, should be specified for preliminary runs as it 

is used to determine the number of realizations.  The PDF’s for the various random variables are 

specified as part of the code specific to each limit state.    

The results for the medium variability case, given in Table 8.2, show that if foundation 

depth is maintained at 2.8 meters, the optimal diameter is 17 meters. In this example, we have 

shown that the optimal design determined through the straight forward d-RBD process for the 
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medium variability case is the same as the design obtained through industry practice which 

involves various partial factors, many conflicting standards, guidelines and certification agency 

requirements. Such a practice would be a hit-and-miss process while the d-RBD process is straight 

forward and only needs the computational models and the best assessment of input variability. 

 

Table 8.1 Summary of reliability assessments of foundation with 17m, 2.8mB D   

Limit state Design parameter variability Target 

reliability, T   

Most important 

variables Low Medium High 

Tilt 
NP 4.3 2.9 1.7 

sV  with M  a 

close second. 

Dynamic stiffness, deep 

bedrock 
NP 2.1 1.3 1.7 

sV  with   

distant second. 

Dynamic stiffness, 

shallow bedrock NP 2.7 1.6 1.7 
,s bV H  with   

distant third. 

Static stiffness, deep 

bedrock 
NP 1.6 1.1 1.7 

,sV M  with    

distant third. 

Static stiffness, shallow 

bedrock NP 2.0 1.1 1.7 
, ,s bV M H  with 

   distant fourth. 

Drained bearing capacity NP 4.1 3.2 3.3 , ,M c    

Undrained bearing 

capacity 
4.0 3.4 2.0 3.3 

,us M   

Notes: 

 NP: Not Performed 
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Figure 8.1 Main simulation parameters of the d-RBD run 

 

 

Figure 8.2 Foundation geometries generated in the d-RBD program execution 

 

For comparison, if design input variability is in the high range and if the depth is maintained 

at 2.8 meters, the most economical foundation diameter determined through the d-RBD process is 

19 meters which corresponds to a concrete volume of 363 cubic meters. Table 8.3 shows the 

reliability indices of all diameters included in the run. As can be noted in this example, reducing 

design parameters variability from high to medium, an objective that can be attained through more 

geotechnical information, can reduce foundation diameter from 19 to 17 meters and results in 

concrete volume reduction of about 60 cubic meters, as well as all associated economies in 
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reinforcing steel, excavation volumes, labor, etc.  In this example, cost of geotechnical uncertainty 

is obvious. 

Table 8.2 Reliability indices for medium variability assumptions, 2.8mD    

Limit State Foundation diameter,  (m)B  

15.0 16.0 17.0 18.0 19.0 20.0 

Tilt, 1.7T   3.71 >3.71 >3.71  >3.71 >3.71 >3.71 

Dynamic stiffness, 1.7T   2.13 2.40 2.63  2.81 2.96 3.11 

Static stiffness, 1.7T   0.76  1.30  1.97  2.69 3.00 3.50 

Drained bearing capacity, 3.3T   2.89  3.47 >3.47  >3.47 >3.47 >3.47 

Undrained bearing capacity, 3.3T    1.78  2.78  3.44  >3.44 >3.44 >3.44 

Optimal design: 

 Diameter 17mB    

 Volume of concrete: 3301mfV     

 

If the geotechnical information confirms the high variability of design inputs, optimization 

is still possible by varying foundation depth. When d-RBD is used with high variability, depth 

ranging from 2.8 to 3.1 meters and diameter ranging from 15 to 20 meters, the optimal design is 

found to be 18 meters in diameter and 3.0 meters deep with a corresponding concrete volume of 

335 cubic meters. Thus, for the high variability case, a choice is available between a 19-meter 

foundation that is 2.8 meters deep (363 cubic meters of concrete) and an 18-meter foundation that 

is 3.0 meters deep (335 cubic meters of concrete). Essentially, the choice in this case is between 

saving about 30 cubic meters of concrete and saving 20 centimeters of additional excavation. This 

example illustrates how the d-RBD method can be used as a design optimization (d-RBDO) tool. 
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Table 8.3 Reliability indices for high variability assumptions, 2.8mD    

Limit State Foundation diameter,  (m)B  

15.0 16.0 17.0 18.0 19.0  20.0 

Tilt, 1.7T   2.67 2.81 2.90 3.06 3.17  3.33 

Dynamic stiffness, 1.7T   1.31  1.45  1.58  1.74 1.88  2.01 

Static stiffness, 1.7T   0.60  0.90  1.27  1.60  1.97  2.31 

Drained bearing capacity, 3.3T   2.30  2.90  3.24  3.54 3.81  >3.81 

Undrained bearing capacity, 3.3T    1.39  2.09  2.80  3.50 3.64  >3.64 

Optimal design: 

 Diameter 19mB    

 Volume of concrete: 3363mfV     

 

8.1.1 Tilt Limit State 

The reliability of the tilt limit state appears high. This may be due to the assumptions 

adopted in this assessment which are based on guidance from draft standard IEC61400-6, (IEC, 

2016). This guidance includes assessing settlement at the S3 load level which corresponds to 

positive compression being maintained under the entire foundation. The formulation used in this 

assessment is for elastic deformations at the S3 load level. For sites where consolidation settlement 

is of concern, the computed reliability could be lower. However, the S3 level may not be an 

appropriate level for consolidation settlement to occur. Additionally, the tilt limits discussed in 

Section 2.8.2 suggest that there is a healthy tilt margin built into industry practice.      

8.1.2 Rocking Stiffness Limit State 

Experience within the industry indicates that foundation stiffness can often be a design 

driver. This is the case in this design example where the static stiffness reliability is very close to 
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the target value and that for the dynamic stiffness under the high variability scenario is not too far 

from the target reliability. Shear wave velocity and applied loading are the most influential 

parameters, but when bedrock is within a depth of influence, the variability in depth to bedrock 

becomes a significant design driver, making the case for diligent assessment of this depth to 

improve design reliability.     

8.1.3 Bearing Capacity Limit State 

The drained ( c   ) bearing capacity limit state has a high level of reliability for the low 

and medium parameter variability cases and is at the target reliability level for the high variability 

case. As expected, the limit state based on undrained ( 0  ) bearing capacity has less reliability 

and meets the target reliability level only for the low variability case. The practical takeaway from 

this finding is that, for fine grained soils, verification of undrained bearing capacity should take 

precedence and reducing uncertainty relative to the driving design parameter, namely undrained 

shear strength, should be a top priority. Overall and with respect to the bearing capacity limit state, 

reliability should be higher than what is computed here. This is because the effective area approach 

was deemed to be conservative compared to other methods as discussed for interaction curve 

methods in Section 2.8.2. 

8.1.4 Applications of the d-RBD Method 

The d-RBD design process, implemented here using MATLAB, is a powerful approach 

that can consider any number of limit states and can arrive at an optimal design that meets the 

target reliability levels of all limit states under consideration. This objective is achieved without 

use of partial factors of any kind and by relying on judgement and experience for the selection of 

the computational model and supplying the best information available on variability of design 
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parameters. This is a significant departure from current design practice but appears to be much less 

confusing and more powerful. 

8.2 Future Work 

With the advent of powerful and portable computing devices, performing the number of 

calculations required by the d-RBD process is a light and readily achievable task for equation-

based verifications. Millions of d-RBD realizations can be generated and analyzed in minutes. 

However, implementing d-RBD in a finite element-based framework would be computationally 

more challenging. Below are some future work areas for improving the efficiency and scope of the 

d-RBD process. 

8.2.1 Incorporating Spatial Variability 

A key limitation of formula-based d-RBD is that it fails to model spatial variability of soils. 

One way to incorporate the effects of spatial variability, at least partially, is through 

homogenization studies. The approach of homogenization aims to obtain “spatially averaged” or 

“equivalent” parameters for soil masses (Fenton & Griffiths, 2003; Fenton et al., 2003; Griffiths 

et al., 2013; Ching, Hu, et al., 2015). Another way is to perform limited RFEM analyses to 

determine worst-case spatial correlation lengths for the important design variables (Baecher & 

Ingra, 1981; Griffiths et al., 2016; Zhu et al., 2018). Once that is completed, a designer could 

simply verify that the spatial correlation length for the project site and for the specific design 

parameter is outside the critical range. In this case, the regular d-RBD procedure can be followed 

with the knowledge that, with respect to spatial variability, results would be on the safe side. 

Alternatively, RFEM-based d-RBD can also be carried out with a lighter computational load since 

spatial variability can conservatively be limited to a value on the safe side of the identified worst-
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case spatial correlation lengths.  The computational load can also be reduced through the 

techniques described in the following section. 

8.2.2 Computational Load Reduction 

The d-RBD method as proposed in this dissertation is a standard direct MCS technique. 

MCS is a sound framework but it can be computationally intensive because it must generate a 

sufficiently high number of realizations relying on the variability information of the design input 

variables to estimate often low probabilities of failure. There are several techniques that can 

drastically reduce the number of realizations and hence the computational load. These include 

Bayesian updating, Kriging, Markov Chain Monte Carlo (MCMC) algorithms, neural networks 

and subset simulation (e.g. Au & Beck, 2001; Robert & Casella, 2011; Ahmed & Soubra, 2012; 

Au & Wang, 2014; Wang & Cao, 2015; Au, 2016; Proppe, 2017). 

Markov Chain Monte Carlo represents a large class of techniques for sampling from a 

probability distribution with the purpose of estimating an integrand region of interest. In reliability 

analysis, the integrand could be the performance function and the region of interest would be the 

failure region. The samples can be independent, such as in “random walk Monte Carlo” or 

correlated which weigh the sampling towards the trials that make greater contribution to the 

integrand. Subset simulation is a simulation method that focuses on the complementary cumulative 

density function (CCDF) of the response to estimate low failure probabilities and can use MCMC 

for efficient sampling (Au & Wang, 2014; Au, 2016). Subset simulation can be combined with 

neural networks as done by Giovanis et al. (2010) for efficient computation of structural failure 

probability. Future work in this area includes integration of such techniques to improve the 

computational efficiency and accuracy of the d-RBD approach so that lower probabilities of 

failures can be computed more efficiently. Wang & Cao (2015) provided sample integrations of 
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the “Expanded RBD” method with subset simulation and used Microsoft Excel to implement the 

more computationally efficient procedure in a drilled shaft design example and slope stability 

analysis example. 

8.2.3 Incorporating Design Robustness 

In the d-RBD procedure adopted in this dissertation, the optimal design is selected as that 

which is least cost (interpreted here as least concrete volume) and meets the reliability requirement; 

i.e., has a probability of failure less than the target probability of failure. While this selection would 

indeed be an optimal one, there could be other selections that have lower probability of failure 

with only minor adjustments to design dimensions and hence only slightly more cost. These 

selections are more robust designs.  In quality engineering, robust designs are insensitive to “noise 

factors” or “hard-to-control” parameters and are achieved through, among other things, 

adjustments to geometry, dimensions and process settings. In Robust Geotechnical Design (RGD), 

the objective is to produce reliability-based designs that are robust; i.e., designs that are be less 

sensitive to uncertainty in geotechnical design parameters. Such designs can be obtained through 

careful adjustments to dimensions or construction techniques (e.g. Khoshnevisan et al., 2017; 

Shrestha et al., 2017). 

8.2.4 Considering Other Applications 

The d-RBD method is illustrated in this dissertation for the design of shallow wind turbine 

foundations. However, it is equally applicable to countless other design situations such as design 

of deep foundations, retaining structures, slope stability, and any formulation involving a limit 

state verification. Another extension of the d-RBD method can be made to fatigue limit states. 

Fatigue is typically not considered in geotechnical design problems for lack of soil fatigue models. 
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For shallow foundations, the closest aspect to geomaterial fatigue is the consideration of soil 

degradation. This consideration is limited to observing industry guidelines relative to no-gapping 

limits and reducing the elastic moduli to reflect the strain level. Such measures consider the soil 

type and its susceptibility to degradation. Soil or rock fatigue models could be envisioned for active 

(pre-tensioned) anchors. When such models are available, the d-RBD method would be a logical 

choice to verify fatigue limit states.        
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APPENDIX A   

MathCAD – DETERMINISTIC CALCULATIONS 

  



DETERMINISTIC COMPUTATIONS AT RANDOM VARIABLE MEANS
Introduction

Deterministic compuations for the three limit states (tilt, rocking stiffness and bearing capacity) are
included in this Appendix. The compuattions are carried out at the mean values of random
variables and for the example problem included in the main body of this dissertation. The main
objectives of these computations are:

to get an idea on the expected value of the performance function,·
to verify all calculations are correct and·
to verify that all units are used properly.·

Tilt Limit State (SLS)
Foundation diameter: B 17m:= Moment (S3 level): MS3 20000kN m:=

In-situ soil density: ρ 1750
kg

m3
:= Shear wave velocity: Vs 200

m
s

:=

Poisson's ratio: ν 0.35:= Correction factor: Iθ 4.16:=

Shear strain level: γ 5 10 4-:= Curvature parameter: α 0.9:=

Shear strength: τmax 100kPa:= Maximum tilt: θmax 0.17deg:=

Tilt angle: θ atan MS3

1 ν-( ) 1
γ ρ Vs

2

τmax









α
+













2 ρ Vs
2 B3

 Iθ















6.25613 10 3- deg=:=

Factor of safety: FStilt
θmax
θ 27.173=:=
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Tilt perfromance function at the means:

Gtilt tan θmax( ) MS3

1 ν-( ) 1
γ ρ Vs

2

τmax









α
+













2 ρ Vs
2 B3

 Iθ- 2.858 10 3-=:=

Verify by Computation of Intermediate Quantities:

Small strain shear modulus: G0 ρ Vs
2 70 MPa=:=

Reference strain: γref
τmax

G0
1.429 10 3-=:=

Shear modulus ratio: λ 1

1
γ
γref









α
+

0.72=:=

Degraded shear modulus: Gr λ G0 50.405 MPa=:=

Degraded Young's modulus: Er 2 1 ν+( ) Gr 136.094 MPa=:=

Tilt angle: θverify atan MS3
1 ν2-

Er B3
 Iθ











6.25613 10 3- deg=:=

Dynamic Rocking Stiffness

Foundation depth: D 2.8m:= Minimum dynamic stiffness: Kdmin 50
GN m

rad
:=

Distance to deep bedrock: Hbd 200m:= Distance to shallow bedrock: Hbs 8.5m:=

Foundation radius: Rf 0.5 B 8.5 m=:=

Dynamic stiffness for deep bedrock:

Kddb
8 ρ Vs

2 Rf
3

3 1 ν-( )
1 2

D
Rf
+








 1 0.7
D

Hbd
+








 1
Rf

6 Hbd
+









 297.517 GN
m

rad
=:=

Performance function at the means: Gkddb Kddb Kdmin- 247.517 GN
m

rad
=:=
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Factor of safety: FSkddb
Kddb

Kdmin
5.95=:=

Dynamic stiffness for bedrock within zone of influence:

Kdsb
8 ρ Vs

2 Rf
3

3 1 ν-( )
1 2

D
Rf
+








 1 0.7
D

Hbs
+








 1
Rf

6 Hbs
+









 420.02 GN
m

rad
=:=

Performance function at the means: Gkdsb Kdsb Kdmin- 370.02 GN
m

rad
=:=

Factor of safety: FSkdsb
Kdsb

Kdmin
8.4=:=

Static Rocking Stiffness

Minimum static stiffness: Ksmin 10
GN m

rad
:=

For static stiffness, the following is recommended per IEC61400-6 (Draft):
Shear modulus must be reduced for the appropriate level of shear strain.·
Effective area should be used. To compute the effective width, the DNV effective area·
approach can be used.
To compute effective dimensions, WTG self-weight, as well as foundation geometry and·
backfill unit weight are all needed.

Turbine self-weight: Pwtg 2275kN:= Moment (S1 level): MS1 50000kN m:=

Unit weight of concrete: γc 23.5
kN

m3
:= Unit weight of backfill: γb 17.0

kN

m3
:=

Foundation Geometry:

Pedestal diameter: Bp 5.4m:= Backfill crossfall rate (1/n):: ncf 33:=

Slab edge thickness: he 0.4m:= Pedestal stickup: hsu 0.15m:=

Slab middle thickness: hm 2.2m:=

Pedestal height: hp D hsu+ hm- 0.75m=:=

Height of upper (tapered) portion of base: htp D hsu+ hp- he- 1.8m=:=
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Footing area: Af 0.25 π B2:=

Pedestal area: Ap 0.25 π Bp
2:=

Vtap
1
3

Ap Ap Af+ Af+( ) htp:=Volume of tapered portion of footing:

Volume of footing: Vf Ap hp Af he+ Vtap+ 301.158 m3=:=

Weight of footing: Pftg Vf γc 7.077 103 kN=:=

Volume of backfill: Vsoil Af htp hp+ hsu-( ) Ap hp hsu-( )- Vtap- 337.822 m3=:=

Weight of backfill: Psoil Vsoil γb 5.743 103 kN=:=

Total vertical load: P Pwtg Pftg+ Psoil+ 1.51 104 kN=:=

Computation of Effective Dimensions:

Load eccentricity: ec
MS1

P
3.312 m=:=

Effective area: Aeff 2 Rf
2 acos

ec
Rf









ec Rf
2 ec2--








 117.28 m2=:=

Major axis dimensions:

be 2 Rf ec-( ) 10.375m=:= le 2 Rf 1 1
be

2 Rf
-









2

- 15.656m=:=

Effective dimensions: leff Aeff
le
be
 13.303m=:= beff

leff
le

be 8.816m=:=

Computation of Static Stiffness:

Static stiffness for deep bedrock:

Ksdb
ρ Vs

2 beff
3

3 1 ν-( ) 1
γ ρ Vs

2

τmax









α
+













1 4
D

beff
+








 1 0.7
D

Hbd
+








 1
beff

12 Hbd
+









:=
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Ksdb 40.756 GN
m

rad
=

Performance function at the means: Gksdb Ksdb Ksmin- 30.756 GN
m

rad
=:=

Factor of safety: FSksdb
Ksdb

Ksmin
4.076=:=

Static stiffness for bedrock within zone of influence:

Kssb
ρ Vs

2 beff
3

3 1 ν-( ) 1
γ ρ Vs

2

τmax









α
+













1 4
D

beff
+








 1 0.7
D

Hbs
+








 1
beff

12 Hbs
+









:=

Kssb 53.762 GN
m

rad
=

Performance function at the means: Gkssb Kssb Ksmin- 43.762 GN
m

rad
=:=

Factor of safety: FSkssb
Kssb

Ksmin
5.376=:=

Drained Bearing Capacity
Effective dimensions are as computed for the static rocking stiffness.

Horizontal load component: Hc 660kN:= Effective soil unit weight: γ' 17.5
kN

m3
:=

Effective friction angle: ϕ' 25deg:= Effective cohesion: c' 50kPa:=

Total vertical load: P 1.51 104 kN=

Effective stress at bearing depth: q0 γ' D 4.9 104 Pa=:=

Bearing Capacity Coefficients (Nc , Nq and Nγ):

Nq eπ tan ϕ'( ) 1 sin ϕ'( )+
1 sin ϕ'( )-
 10.662=:= Nc Nq 1-( ) cot ϕ'( ) 20.721=:=

Nγ 3
2

Nq 1-( ) tan ϕ'( ) 6.758=:=
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Nc Correction Terms:

sc 1 0.2
beff
leff

+ 1.133=:= dc 1 0.4
D

beff
+ 1.127=:=

ic 1
Hc

P Aeff c' cot ϕ'( )+
-









2

0.953=:=

Nq Correction Terms:

sq 1 0.2
beff
leff

+ 1.133=:= iq 1
Hc

P Aeff c' cot ϕ'( )+
-









2

0.953=:=

dq 1 1.2
D

beff
 1 sin ϕ'( )-( )2 tan ϕ'( )( )+ 1.059=:=

Nq Correction Terms:

sγ 1 0.4
beff
leff

- 0.735=:= dγ 1.0:= iγ 1
Hc

P Aeff c' cot ϕ'( )+
-









4

0.908=:=

Ultimate Bearing Capacity:

qult c' Nc sc dc ic q0 Nq sq dq iq+
1
2
γ' beff Nγ sγ dγ iγ+ 2.205 106 Pa=:=

Applied Bearing: q
P

Aeff
1.287 105 Pa=:=

Perfomance function mean: gmeanbcd qult q- 2.076 106 Pa=:=

Factor of safety: FSdrained
qult

q
17.133=:=
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Undrained Bearing Capacity

Undrained shear strength: su τmax 1 105 Pa=:=

Nc0 5.14:=

sc0 1 0.2
beff
leff

+ 1.133=:=

ic0
1
2

1
2

1
Hc

Aeff su
-+ 0.986=:=

dc0 1.0:=

qultu su Nc0 sc0 dc0 ic0 q0+ 6.228 105 Pa=:=

Factor of safety: FSundrained
qultu

q
4.839=:=
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APPENDIX B   

MATLAB SOURCE CODE AND OUTPUT 

B.1 Medium Variability Case 
 
B.1.1 Source Code 
 
%% d-RBD of Gravity-base WTG Foundations 
% All limit states in one loop 
% 
% Possible limit states are: 
%   TLT = Tilt 
%   DYS = Dynamic stiffness 
%   STS = Static stiffness 
%   DBC = Drained bearing capacity 
%   UBC = Undrained bearing capacity 
% 
% Possibe distributions 
%      NR = Normal 
%      LN = Lognormal 
%      TH = Tanh (bounded) 
%      DT = Deterministic 
% NOTES: 
% 1. Always use consistent units: kg, m, s, N, Pa, J 
% 2. Do not use NR PDF for any variable with COV>0.25 as the PDF will 
%    likely produce meaningless negative numbers. 
% 3. To study parameter rankings, run program from one combination of 
%    design decision parameters. 
% 4. The number of realizations can be adjusted by adjusting the COV on the 
%    probability of failure. A COV of 0.3 or 0.4 could be used for 
%    preliminary runs. For final runs, the COV should 0.1 or less. 
% 
clear all;                           % Clear all 
fileID = fopen('dRBD_MV.txt','w');   % Change output file name, if desired. 
fprintf(fileID,'%-73s\r\n', ... 
  '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 
fprintf(fileID,'%-73s\r\n', ... 
  '--------------========= Details of dRBD Run Results ========--------------'); 
fprintf(fileID,'%-73s\r\n', ... 
  '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 
fprintf(fileID,'\r\n%73s\r\n', ... 
  '                                                                          '); 
fprintf(fileID,'%-73s\r\n', ... 
  'This output file contains details of the d-RBD run and its results.       ');  
fprintf(fileID,'%-73s\r\n', ... 
  'All input is embedded into the MATLAB program and is echoed here for      '); 
fprintf(fileID,'%-73s\r\n', ... 
  'record, verification and documentation.'); 
fprintf(fileID,'%-73s\r\n\r\n', ... 
  'All quantities are in consistent units: kg, m, s, N, Pa, J'); 
  
  
%% Main simulation parameters 
Title="Medium Variability Case";     % Descriptive design case title 
PLS=["TLT" "DYS" "STS" "DBC" "UBC"]; % Possible limit states 
LSO=[    1     1     1     1     1]; % 1=verify, 0=do not verify 
LST=[    1     1     1     2     2]; % Limit state type: 1=SLS,2=ULS,3-FLS 
nrvmax=10;              % Maximum number of random variables in any limit state 
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B=15:1:20;              % Foundation diameter(s) 
D=2.8:0.1:3.1;          % Foundation depth(s) 
btsls=1.7;              % Target reliabilty index for SLS 
btuls=3.3;              % Target reliability index for ULS 
pfCOV=0.15;             % Desired COV of probability of failure 
%% Computation of some prelimnary parameters 
nls=nnz(LSO);           % Number of limit states in this run 
nb=length(B);           % Number of foundation diameters 
nd=length(D);           % Number of foundation depths 
LS=strings(nls,1);LT=zeros(nls,1);YN=strings(nls,nb,nd);eg=zeros(nls,nb,nd); 
nbdt=zeros(nb,nd);Xmuf=zeros(nls,nb,nd,nrvmax); 
Voptls=zeros(nls,1);bols=zeros(nls,1);dols=zeros(nls,1); 
  
nf=zeros(nls,nb,nd);pf=zeros(nls,nb,nd);ri=zeros(nls,nb,nd); 
jp=0; 
for ip=1:length(PLS) 
  if LSO(ip)==1 
    jp=jp+1; 
    LS(jp,1)=PLS(ip); 
    LT(jp)=LST(ip); 
  end 
end 
% Compute tagert probabilities of failures (for SLS and ULS) 
if btsls<2.6 
  pftsls=1.2*exp(-2.06*btsls); 
elseif (btsls>=2.6)&&(btsls<=4.8) 
  pftsls=196*exp(-4.0*btsls); 
else 
  pftsls=1000000*exp(-5.8*btsls); 
end 
if btuls<2.6 
  pftuls=1.2*exp(-2.06*btuls); 
elseif (btuls>=2.6)&&(btuls<=4.8) 
  pftuls=196*exp(-4.0*btuls); 
else 
  pftuls=1000000*exp(-5.8*btuls); 
end 
pftsls 
pftuls 
nr1=10*nb*nd/pftsls;             % Minimum number of realizations - Estimate 1 
nr2=(1/pftsls-1)*nb*nd/pfCOV^2;  % Minimum number of realizations - Estimate 2 
nrsls=round(max([nr1 nr2]));     % Number of realizations - SLS 
nr1=10*nb*nd/pftuls;             % Minimum number of realizations - Estimate 1 
nr2=(1/pftuls-1)*nb*nd/pfCOV^2;  % Minimum number of realizations - Estimate 2 
nruls=round(max([nr1 nr2]));     % Number of realizations - ULS 
nrmax=max(nruls,nrsls) 
%nrmax=2000; 
nrsls=nrmax;nruls=nrmax;ptot=zeros(nrmax,1);r=zeros(nrmax,1); 
g=zeros(nls,nrmax);aeff=zeros(nls,nrmax);ecc=zeros(nls,nrmax); 
%% Print results to output text file 
fprintf(fileID,'%40s %-40s\r\n','Design case title......................:', ... 
  Title); 
fprintf(fileID,'%40s %7.2f\r\n','Target reliabilty index for SLS........:', ... 
  btsls); 
fprintf(fileID,'%40s %7.4f\r\n','Target probability of failure for SLS..:', ... 
  pftsls); 
fprintf(fileID,'%40s %7.2f\r\n','Target reliabilty index for ULS........:', ... 
  btuls); 
fprintf(fileID,'%40s %7.5f\r\n','Target probability of failure for ULS..:', ... 
  pftuls); 
fprintf(fileID,'%40s %s\r\n','Foundation diameters...................:', ... 
  sprintf('%5.1f ', B)); 
fprintf(fileID,'%40s %s\r\n','Foundation depths......................:', ... 
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  sprintf('%5.1f ', D)); 
fprintf(fileID,'%40s %7i\r\n','Number of realizations all combinations:', ... 
  nrmax); 
fprintf(fileID,'%40s %7i\r\n','Number of design decision combinations.:', ... 
  nb*nd); 
fprintf(fileID,'%40s %7i\r\n','Number of realizations per combination.:', ... 
  round(nrmax/(nb*nd))); 
  
%% Fixed dimensions, other deterministic parameters & derived quantities 
% 
% Fixed dimensions and parameters 
% 
he=0.4;               % Base edge height 
hm=2.2;               % Base middle height 
hsu=0.15;             % Pedestal stickup 
bp=5.4;               % Pedestal diameter 
bb=5.4;               % Base top diameter 
gconc=23500;          % Unit weight of concrete 
gbsoil=17000;         % Unit weight of backfill soil 
Pwtg=2.275e6;         % Weight of WTG 
% 
% Derived quantities 
% 
hp=zeros(nd,1);Af=zeros(nb,1);Vb1=zeros(nb,1);Vb2=zeros(nb,1);Vp=zeros(nd,1); 
Vf=zeros(nb,nd);htp=zeros(nd);Vsoil=zeros(nb,nd);Pc=zeros(nb,nd); 
Ps=zeros(nb,nd);Ptot=zeros(nb,nd); 
ncomb=zeros(nb,nd);beta=zeros(nb,nd); 
Ap=0.25*pi*bp^2;                          % Pedestal area 
Ab=0.25*pi*bb^2;                          % Base top area 
for ib=1:nb 
  for id=1:nd 
    hp(id)=D(id)+hsu-hm;                  % Pedestal height 
    Af(ib)=0.25*pi*B(ib)^2;               % Footing area 
    Vb1(ib)=Af(ib)*he;                    % Volume of lower portion of base 
    Vb2(ib)=(Ab+(Ab*Af(ib))^0.5+ ...      % Volume of tapered portion of base 
    Af(ib))*(hm-he)/3;                
    Vp(id)=Ap*hp(id);                     % Pedestal volume 
    Vf(ib,id)=Vb1(ib)+Vb2(ib)+Vp(id);     % Foundation volume 
    htp(id)=D(id)+hsu-hp(id)-he;          % Height of tapered portion of footing 
    Vsoil(ib,id)=Af(ib)*(htp(id)+ ... 
    hp(id)-hsu)-Ap*(hp(id)-hsu)-Vb2(ib);  % Volume of backfill soil 
    Pc(ib,id)=Vf(ib,id)*gconc;            % Weight of foundation concrete              
    Ps(ib,id)=Vsoil(ib,id)*gbsoil;        % Weight of backfill soil 
    Ptot(ib,id)=Pwtg+Pc(ib,id)+Ps(ib,id); % Total vertical load 
  end 
end 
fprintf(fileID,'\r\n %-45s\r\n','Fixed quantities & Foundation Dimensions:'); 
fprintf(fileID,'%-35s %8.2f\r\n','Pedestal diameter.................:',bp); 
fprintf(fileID,'%-35s %8.2f\r\n','Base top diameter.................:',bb); 
fprintf(fileID,'%-35s %8.2f\r\n','Pedestal stick-up.................:',hsu); 
fprintf(fileID,'%-35s %8.2f\r\n','Base middle thickness.............:',hm); 
fprintf(fileID,'%-35s %8.2f\r\n','Base edge thickness...............:',he); 
fprintf(fileID,'%-35s %8.1f\r\n','Concrete unit weight..............:',gconc); 
fprintf(fileID,'%-35s %8.1f\r\n','Backfill soil unit weight.........:',gbsoil); 
fprintf(fileID,'%-35s %5.2e\r\n','Self weight of WTG................:',Pwtg); 
fprintf(fileID,'\r\n %-22s\r\n\r\n', ... 
  'Foundation Volumes for all B-D Combinations:'); 
fprintf(fileID,'%-40s\r\n','        Foundation Diameter'); 
fprintf(fileID,'%6s %s\r\n\r\n',' Depth',sprintf('%7.2f ', B)); 
for id=1:nd 
  fprintf(fileID,'%6.2f %s\r\n',D(id), ... 
    sprintf('%7.2f ',Vf(:,id))); 
end 
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fprintf(fileID,'\r\n'); 
   
%% Plot possible foundation geometries 
color=["r" "g" "b" "m" "c" "k"]; 
figure('name', 'Foundation Geometries'); 
 for ib=1:nb 
    for id=1:nd 
     clr=color(randi(6)); 
     xf=[-B(ib)/2 -B(ib)/2 -bb/2 -bp/2 ... 
       -bp/2 bp/2 bp/2 bb/2 0.5*B(ib) B(ib)/2 -B(ib)/2]; 
     yf=[0 he hm hm hm+hp(id) hm+hp(id) hm hm he 0 0]; 
     xgl=[-B(ib)/2 -bp/2]; 
     xgr=[bp/2 B(ib)/2]; 
     yg=[D(id) D(id)]; 
     plot(xf,yf) 
     daspect([1 1 1]) 
     hold on 
     plot(xgl,yg,clr) 
     plot(xgr,yg,clr) 
    end     
 end 
set(gca,'xlim',[-B(nb)/2-B(nb)/10 B(nb)/2+B(nb)/10]) 
set(gca,'ylim',[-0.2*D(nd) 1.2*D(nd)]) 
hold off 
  
% Generate design decision variable values (uniform distribution) 
b=B(randi(nb,nrmax,1)); 
d=D(randi(nd,nrmax,1)); 
for ir=1:nrmax 
    r(ir)=0.5*b(ir); 
    for ib=1:nb 
      for id=1:nd 
        if (b(ir)==B(ib))&&(d(ir)==D(id)) 
          nbdt(ib,id)=nbdt(ib,id)+1; 
          ptot(ir)=Ptot(ib,id); 
        end 
      end 
    end 
end 
% 
% Loop on selected limit states 
for ils=1:nls 
  
%% Tilt limit state 
  if LS(ils)=="TLT" 
    tiltmax=0.17; tiltmaxr=tiltmax*pi/180.;       % Maximum allowed tilt 
    etilt=zeros(nb,nd); 
    % Random Variables 
    % 
    RV   = ["Mmnt"   "Dens"   "prat" "  Vs"   "sstn"   "tmax" "alpha"  "Itha"]; 
    Xdis = [  "LN"     "NR"     "NR"   "LN"     "LN"     "LN"    "LN"    "LN"]; 
    Xmu  = [2.0e+7   1750.0     0.35  200.0   0.0005   1.0e+5     0.9    4.16]; 
    Xcov = [  0.20     0.05     0.05    0.4     0.20     0.25     0.1    0.05]; 
    Xmin = [   0.0      0.0     0.25    0.0      0.0      0.0     0.0     0.0]; 
    Xmax = [   0.0      0.0     0.45    0.0      0.0      0.0     0.0     0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Tilt Limit State:'); 
    fprintf(fileID,'%-35s %7.2f\r\n','Maximum allowed tilt (degrees)...:', ... 
      tiltmax); 
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    fprintf(fileID,'\r\n %-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Tilt value at the means 
    M      = Xmu(1); 
    den    = Xmu(2); 
    pr     = Xmu(3); 
    Vs     = Xmu(4); 
    ss     = Xmu(5); 
    tmax   = Xmu(6); 
    alpha  = Xmu(7); 
    itheta = Xmu(8); 
    for ib=1:nb 
      for id=1:nd 
        etilt(ib,id)  = atan(M*(1-pr)*(1+(ss*den*Vs^2/tmax)^alpha)* ... 
          itheta/(2*den*Vs^2*B(ib)^3))*180./pi;       
        eg(ils,ib,id) = tan(tiltmaxr)-M*(1-pr)*(1+(ss*den*Vs^2/tmax)^alpha)* ... 
          itheta/(2*den*Vs^2*B(ib)^3); 
      end 
    end 
%    etilt 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0; 
          0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0]; 
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
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        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      M        = crv(ir,1); 
      den      = crv(ir,2); 
      pr       = crv(ir,3); 
      Vs       = crv(ir,4); 
      ss       = crv(ir,5); 
      tmax     = crv(ir,6); 
      alpha    = crv(ir,7); 
      itheta   = crv(ir,8); 
  
      g(ils,ir)   = tan(tiltmaxr)-M*(1-pr)*(1+(ss*den*Vs^2/tmax)^alpha)* ... 
                 itheta/(2*den*Vs^2*b(ir)^3); 
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/(Xsig(irv)/ ... 
              sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
%% Dynamic stiffness limit state 
   elseif LS(ils)=="DYS" 
    Kdynmin=5e10;               % Minimum stiffness (Nm/rad) 
    eKdyn=zeros(nb,nd); 
    % 
    % Random Variables 
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    % 
    RV   = [ "Dens"    "Prat"   "  Vs" "Hbed"]; 
    Xdis = [   "NR"      "NR"     "LN"   "LN"]; 
    Xmu  = [ 1750.0      0.35    200.0    8.5]; 
    Xcov = [   0.05      0.05     0.40   0.30]; 
    Xmin = [    0.0       0.0      0.0    0.0]; 
    Xmax = [    0.0       0.0      0.0    0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Dynamic Stiffness Limit State:'); 
    fprintf(fileID,'%-35s %7.2e\r\n','Minimum required stiffness........:', ... 
      Kdynmin); 
    fprintf(fileID,'\r\n %-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
     
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Tilt value at the means 
    den    = Xmu(1); 
    pr     = Xmu(2); 
    Vs     = Xmu(3); 
    Hb     = Xmu(4); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        eKdyn(ib,id)=8.*den*Vs^2*R^3*(1+2*D(id)/R)* ... 
          (1+0.7*D(id)/Hb)*(1+R/(6*Hb))/(3*(1-pr)); 
        eg(ils,ib,id)  = eKdyn(ib,id)-Kdynmin; 
      end 
    end 
%    eKdyn 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0;  
          0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 1.0];  
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
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    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      den      = crv(ir,1); 
      pr       = crv(ir,2); 
      Vs       = crv(ir,3); 
      Hb       = crv(ir,4); 
      R=0.5*b(ir); 
      g(ils,ir)   = 8.0*den*Vs^2*R^3*(1+2*d(ir)/R)* ... 
                 (1+0.7*d(ir)/Hb)*(1+R/(6*Hb))/(3*(1-pr))-Kdynmin; 
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/(Xsig(irv)/ ... 
              sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
%% Static stiffness limit state 
   elseif LS(ils)=="STS" 
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    Kstamin=1e10;         % Minimum stiffness (Nm/rad) 
    eKsta=zeros(nb,nd); 
    % 
    % Random Variables 
    % 
    RV   = ["Momt"  "Dens"  "  Vs" "Tmax" "sstn" "Alfa" "Hbed" "Prat"]; 
    Xdis = [  "LN"    "NR"    "LN"   "LN"   "LN"   "NR"   "LN"   "NR"]; 
    Xmu  = [  5.0e7 1750.0   200.0  1.0e5  5.e-4   0.90    8.5   0.35]; 
    Xcov = [   0.20   0.05    0.40   0.25    0.2   0.10   0.30   0.05]; 
    Xmin = [    0.0    0.0     0.0    0.0    0.0    0.0    0.0    0.0]; 
    Xmax = [    0.0    0.0     0.0    0.0    0.0    0.0    0.0    0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Static Stiffness Limit State:'); 
    fprintf(fileID,'%-35s %7.2e\r\n','Minimum required stiffness........:', ... 
      Kstamin); 
    fprintf(fileID,'\r\n %-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
     
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Static stiffness values at the means 
    M     = Xmu(1); 
    den   = Xmu(2); 
    Vs    = Xmu(3); 
    Tmax  = Xmu(4); 
    sstrn = Xmu(5); 
    alfa  = Xmu(6); 
    Hb    = Xmu(7); 
    pr    = Xmu(8); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        ec=M/Ptot(ib,id); 
        Aeff=2*(R^2*acos(min(1,ec/R))-ec*sqrt(R^2-ec^2)); 
        be=2*(R-ec); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(Aeff*le/be); 
        beff=leff*be/le; 
        eKsta(ib,id)=den*Vs^2*beff^3*(1+4*D(id)/beff)*(1+0.7*D(id)/Hb)* ... 
          (1+beff/12/Hb)/(3*(1-pr)*(1+(sstrn*den*Vs^2/Tmax)^alfa)); 
        eg(ils,ib,id)=eKsta(ib,id)-Kstamin; 
      end 
    end 
%    eKsta 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
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    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0; 
          0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0]; 
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
        M     = crv(ir,1); 
        den   = crv(ir,2); 
        Vs    = crv(ir,3); 
        Tmax  = crv(ir,4); 
        sstrn = crv(ir,5); 
        alfa  = crv(ir,6); 
        Hb    = crv(ir,7); 
        pr    = crv(ir,8); 
        R     = r(ir); 
        ecc(ils,ir)=min(M/ptot(ir),0.9*R); 
        EC=ecc(ils,ir); 
        aeff(ils,ir)=2*(R^2*acos(min(1,EC/R))-EC*sqrt(R^2-EC^2)); 
        be=2*(R-EC); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(aeff(ils,ir)*le/be); 
        beff=leff*be/le; 
        g(ils,ir)=den*Vs^2*beff^3*(1+4*d(ir)/beff)*(1+0.7*d(ir)/Hb)* ... 
          (1+beff/12/Hb)/(3*(1-pr)*(1+(sstrn*den*Vs^2/Tmax)^alfa))-Kstamin; 
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
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            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/(Xsig(irv)/sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
      
%% Drained bearing capacity limit state 
   elseif LS(ils)=="DBC" 
    % 
    % Random Variables 
    % 
    RV =   ["Momt"  "Horz"  "eDen"  "ePhi"         "eCoh"]; 
    Xdis = [  "LN"    "LN"    "NR"    "LN"           "LN"]; 
    Xmu  = [  5.0e7  6.6e5  17500.    25.0*pi/180.  5.0e4]; 
    Xcov = [   0.20   0.20    0.05    0.30           0.20]; 
    Xmin = [    0.0    0.0     0.0     0.0            0.0]; 
    Xmax = [    0.0    0.0     0.0     0.0            0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Drained Bearing Capacity Limit State:'); 
    fprintf(fileID,'%-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
  
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Static stiffness values at the means 
    M    = Xmu(1); 



236 
 

    H    = Xmu(2); 
    eDen = Xmu(3); 
    ePhi = Xmu(4); 
    eCoh = Xmu(5); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        ec=M/Ptot(ib,id); 
        Aeff=2*(R^2*acos(min(1,ec/R))-ec*sqrt(R^2-ec^2)); 
        be=2*(R-ec); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(Aeff*le/be); 
        beff=leff*be/le; 
        nq=exp(pi*tan(ePhi))*(1+sin(ePhi))/(1-sin(ePhi)); 
        nc=(nq-1)*cot(ePhi); 
        ng=1.5*(nq-1)*tan(ePhi); 
        sc=1+0.2*beff/leff; 
        dc=1+0.4*D(id)/beff; 
        ic=(1-H/(Ptot(ib,id)+Aeff*eCoh*cot(ePhi)))^2; 
        sq=1+0.2*beff/leff; 
        dq=1+1.2*(D(id)/beff)*tan(ePhi)*(1.-sin(ePhi))^2; 
        iq=ic; 
        sg=1-0.4*beff/leff; 
        dg=1.0; 
        ig=ic^2; 
        eg(ils,ib,id)=eCoh*nc*sc*dc*ic+eDen*D(id)*nq*sq*dq*iq+ ... 
          0.5*eDen*beff*ng*sg*dg*ig-Ptot(ib,id)/Aeff; 
      end 
    end 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0 0.0;  
          0.0 0.0 1.0 0.0 0.0;  
          0.0 0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 0.0 1.0]; 
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
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      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      M    = crv(ir,1); 
      H    = crv(ir,2); 
      eDen = crv(ir,3); 
      ePhi = crv(ir,4); 
      eCoh = crv(ir,5); 
      R=r(ir); 
      ecc(ils,ir)=min(M/ptot(ir),0.9*R); 
      EC=ecc(ils,ir); 
      aeff(ils,ir)=2*(R^2*acos(min(1,EC/R))-EC*sqrt(max(0,R^2-EC^2))); 
      be=2*(R-EC); 
      le=2*R*sqrt(1-(1-be/(2*R))^2); 
      leff=sqrt(aeff(ils,ir)*le/be); 
      beff=leff*be/le; 
   
      nq=exp(pi*tan(ePhi))*(1+sin(ePhi))/(1-sin(ePhi)); 
      nc=(nq-1)*cot(ePhi); 
      ng=1.5*(nq-1)*tan(ePhi); 
      sc=1+0.2*beff/leff; 
      dc=1+0.4*D(id)/beff; 
      ic=(1-H/(ptot(ir)+aeff(ils,ir)*eCoh*cot(ePhi)))^2; 
      sq=1+0.2*beff/leff; 
      dq=1+1.2*(d(ir)/beff)*tan(ePhi)*(1.-sin(ePhi))^2; 
      iq=ic; 
      sg=1-0.4*beff/leff; 
      dg=1.0; 
      ig=ic^2; 
      g(ils,ir)=eCoh*nc*sc*dc*ic+eDen*d(ir)*nq*sq*dq*iq+ ... 
          0.5*eDen*beff*ng*sg*dg*ig-ptot(ir)/aeff(ils,ir); 
  
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/(Xsig(irv)/ ... 
              sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
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      end 
      RVS 
      NZS 
    end          
% 
%% Undrained bearing capacity limit state 
   elseif LS(ils)=="UBC" 
    % 
    % Random Variables 
    % 
    RV   = ["Momt"  "Horz"  "  Su"  "tDen"]; 
    Xdis = [  "LN"    "LN"    "LN"    "NR"]; 
    Xmu  = [  5.0e7  6.6e5   1.0e5 17500.0]; 
    Xcov = [   0.20   0.20    0.25    0.05]; 
    Xmin = [    0.0    0.0     0.0     0.0]; 
    Xmax = [    0.0    0.0     0.0     0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Undrained Bearing Capacity Limit State:'); 
    fprintf(fileID,'%-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Static stiffness values at the means 
    M    = Xmu(1); 
    H    = Xmu(2); 
    Su   = Xmu(3); 
    tDen = Xmu(4); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        ec=M/Ptot(ib,id); 
        Aeff=2*(R^2*acos(min(1,ec/R))-ec*sqrt(max(0,R^2-ec^2))); 
        be=2*(R-ec); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(Aeff*le/be); 
        beff=leff*be/le; 
        nc0=5.14; 
        sc0=1+0.2*beff/leff; 
        ic0=0.5+0.5*sqrt(max(0,1-H/(Aeff*Su))); 
        eg(ils,ib,id)=Su*nc0*sc0*ic0+tDen*D(id)-Ptot(ib,id)/Aeff; 
      end 
    end 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
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    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0;  
          0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 1.0];  
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      M    = crv(ir,1); 
      H    = crv(ir,2); 
      Su   = crv(ir,3); 
      tDen = crv(ir,4); 
      R=r(ir); 
      ecc(ils,ir)=min(M/ptot(ir),0.8*R); 
      EC=ecc(ils,ir); 
      aeff(ils,ir)=2*(R^2*acos(min(1,EC/R))-EC*sqrt(max(0,R^2-EC^2))); 
      be=2*(R-EC); 
      le=2*R*sqrt(1-(1-be/(2*R))^2); 
      leff=sqrt(aeff(ils,ir)*le/be); 
      beff=leff*be/le;  
      nc0=5.14; 
      sc0=1+0.2*beff/leff; 
      ic0=0.5+0.5*sqrt(max(0,1-H/(aeff(ils,ir)*Su))); 
      g(ils,ir)=Su*nc0*sc0*ic0+tDen*d(ir)-ptot(ir)/aeff(ils,ir); 
  
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
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    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/(Xsig(irv)/ ... 
              sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
   else 
    status="Not supposed to be here" 
   end 
end 
for ils=1:nls 
  for ib=1:nb 
    for id=1:nd 
      pf(ils,ib,id)=nf(ils,ib,id)*nb*nd/nrmax;  
        if pf(ils,ib,id)>0.006 
          ri(ils,ib,id)=log(1.2/pf(ils,ib,id))/2.06; 
        elseif (pf(ils,ib,id)<=0.006)&&(pf(ils,ib,id)>=10^-6) 
          ri(ils,ib,id)=log(196/pf(ils,ib,id))/4.0; 
        else 
          ri(ils,ib,id)=log(1000000/pf(ils,ib,id))/5.8; 
        end 
      if LT(ils)==1 
        if ri(ils,ib,id)<=btsls 
          YN(ils,ib,id)="N"; 
        else 
          YN(ils,ib,id)="Y"; 
        end 
      else 
        if ri(ils,ib,id)<=btuls 
          YN(ils,ib,id)="N"; 
        else 
          YN(ils,ib,id)="Y"; 
        end         
      end         
    end 
  end 
end 
nf 
pf 
ri 
YN 
for ils=1:nls 
%  Voptls(ils)=max(Vf,[],'all'); 
  Voptls(ils)=max(max(Vf)); 
  bols(ils)=B(nb); 
  dols(ils)=D(nd); 
  for ib=nb:-1:1 
    for id=nd:-1:1 
      if (YN(ils,ib,id)=="Y")&&(Vf(ib,id)<Voptls(ils)) 
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        Voptls(ils)=Vf(ib,id); 
        bols(ils)=B(ib); 
        dols(ils)=D(id); 
      end 
    end 
  end 
end 
Vopt=min(Voptls); 
for ils=1:nls 
  if Voptls(ils)>Vopt 
    Vopt=Voptls(ils); 
    bo=bols(ils); 
    do=dols(ils); 
  end 
end 
%Voptls 
%bols 
%dols 
Vopt 
bo 
do 
  
%hold off 
%for ils=1:nls 
%  figure('name', 'Histogram g'); 
%  daspect auto 
%  histogram(g(ils,:)) 
%end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Probabilities of Failure'); 
fprintf(fileID,'%12s %6s %s\r\n\r\n',' Limit State',' Depth', ... 
  sprintf('%7.2f ', B)); 
for ils=1:nls 
  for id=1:nd 
    fprintf(fileID,'%12s %6.2f %s\r\n',LS(ils),D(id), ... 
      sprintf('%6.1e ',pf(ils,:,id))); 
  end 
  fprintf(fileID,'\r\n'); 
end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Reliability Indices'); 
fprintf(fileID,'%12s %6s %s\r\n\r\n',' Limit State',' Depth', ... 
  sprintf('%6.2f ', B)); 
for ils=1:nls 
  for id=1:nd 
    fprintf(fileID,'%12s %6.2f %s\r\n',LS(ils),D(id), ... 
      sprintf('%6.2f ',ri(ils,:,id))); 
  end 
  fprintf(fileID,'\r\n'); 
end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Acceptable/Unacceptable (Y/N) Analysis'); 
fprintf(fileID,'%12s %6s %s\r\n\r\n',' Limit State',' Depth', ... 
  sprintf('%6.2f ', B)); 
for ils=1:nls 
  for id=1:nd 
    fprintf(fileID,'%12s %6.2f %s\r\n',LS(ils),D(id), ... 
      sprintf('%6s ',YN(ils,:,id))); 
  end 
  fprintf(fileID,'\r\n'); 
end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Optimal Design:'); 
fprintf(fileID,'%-25s %6.2f\r\n','Foundation diameter....:',bo); 
fprintf(fileID,'%-25s %6.2f\r\n','Foundation depth.......:',do); 
fprintf(fileID,'%-25s %6.2f\r\n','Foundation volume......:',Vopt); 
fclose(fileID); 
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B.1.2 Output 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--------------========= Details of dRBD Run Results ========-------------- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
                                                                           
This output file contains details of the d-RBD run and its results.        
All input is embedded into the MATLAB program and is echoed here for       
record, verification and documentation.                                   
All quantities are in consistent units: kg, m, s, N, Pa, J                
 
Design case title......................: Medium Variability Case                  
Target reliabilty index for SLS........:    1.70 
Target probability of failure for SLS..:  0.0362 
Target reliabilty index for ULS........:    3.30 
Target probability of failure for ULS..: 0.00036 
Foundation diameters...................:  15.0  16.0  17.0  18.0  19.0  20.0  
Foundation depths......................:   2.8   2.9   3.0   3.1  
Number of realizations all combinations: 2939695 
Number of design decision combinations.:      24 
Number of realizations per combination.:  122487 
 
 Fixed quantities & Foundation Dimensions:     
Pedestal diameter.................:     5.40 
Base top diameter.................:     5.40 
Pedestal stick-up.................:     0.15 
Base middle thickness.............:     2.20 
Base edge thickness...............:     0.40 
Concrete unit weight..............:  23500.0 
Backfill soil unit weight.........:  17000.0 
Self weight of WTG................: 2.28e+06 
 
 Foundation Volumes for all B-D Combinations: 
 
        Foundation Diameter              
 Depth   15.00   16.00   17.00   18.00   19.00   20.00  
 
  2.80  245.80  272.69  301.16  331.19  362.80  395.97  
  2.90  248.09  274.99  303.45  333.48  365.09  398.26  
  3.00  250.38  277.28  305.74  335.77  367.38  400.55  
  3.10  252.67  279.57  308.03  338.06  369.67  402.84  
 
 
 Tilt Limit State:                             
Maximum allowed tilt (degrees)...:     0.17 
 
 Variable          Mmnt       Dens       prat         Vs       sstn       tmax      alpha       
Itha   
Distribution        LN         NR         NR         LN         LN         LN         LN         
LN   
Mean Value    2.00e+07   1.75e+03   3.50e-01   2.00e+02   5.00e-04   1.00e+05   9.00e-
01   4.16e+00   
COV               0.20       0.05       0.05       0.40       0.20       0.25       0.10       
0.05   
 
 
 Dynamic Stiffness Limit State:                
Minimum required stiffness........: 5.00e+10 
 
 Variable          Dens       Prat         Vs       Hbed   
Distribution        NR         NR         LN         LN   
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Mean Value    1.75e+03   3.50e-01   2.00e+02   8.50e+00   
COV               0.05       0.05       0.40       0.30   
 
 Static Stiffness Limit State:                 
Minimum required stiffness........: 1.00e+10 
 
 Variable          Momt       Dens         Vs       Tmax       sstn       Alfa       Hbed       
Prat   
Distribution        LN         NR         LN         LN         LN         NR         LN         
NR   
Mean Value    5.00e+07   1.75e+03   2.00e+02   1.00e+05   5.00e-04   9.00e-01   8.50e+00   
3.50e-01   
COV               0.20       0.05       0.40       0.25       0.20       0.10       0.30       
0.05   
 
 
 Drained Bearing Capacity Limit State:         
Variable          Momt       Horz       eDen       ePhi       eCoh   
Distribution        LN         LN         NR         LN         LN   
Mean Value    5.00e+07   6.60e+05   1.75e+04   4.36e-01   5.00e+04   
COV               0.20       0.20       0.05       0.30       0.20   
 
 
 Undrained Bearing Capacity Limit State:       
Variable          Momt       Horz         Su       tDen   
Distribution        LN         LN         LN         NR   
Mean Value    5.00e+07   6.60e+05   1.00e+05   1.75e+04   
COV               0.20       0.20       0.25       0.05   
 
 
 Probabilities of Failure 
 
 Limit State  Depth   15.00   16.00   17.00   18.00   19.00   20.00  
 
         TLT   2.80 4.1e-05 0.0e+00 8.2e-06 0.0e+00 0.0e+00 0.0e+00  
         TLT   2.90 8.2e-05 1.6e-05 8.2e-06 0.0e+00 0.0e+00 0.0e+00  
         TLT   3.00 4.9e-05 2.4e-05 0.0e+00 0.0e+00 0.0e+00 0.0e+00  
         TLT   3.10 6.5e-05 8.2e-06 8.2e-06 8.2e-06 0.0e+00 0.0e+00  
 
         DYS   2.80 1.7e-02 8.7e-03 5.1e-03 2.7e-03 1.5e-03 8.6e-04  
         DYS   2.90 1.5e-02 8.8e-03 4.4e-03 2.3e-03 1.2e-03 7.3e-04  
         DYS   3.00 1.3e-02 8.3e-03 4.4e-03 2.3e-03 1.0e-03 6.9e-04  
         DYS   3.10 1.3e-02 7.2e-03 4.1e-03 2.2e-03 1.2e-03 5.3e-04  
 
         STS   2.80 2.8e-01 8.8e-02 2.3e-02 5.2e-03 1.0e-03 2.4e-04  
         STS   2.90 2.4e-01 7.3e-02 1.7e-02 3.9e-03 7.8e-04 1.8e-04  
         STS   3.00 2.0e-01 5.9e-02 1.4e-02 2.9e-03 6.8e-04 1.8e-04  
         STS   3.10 1.7e-01 4.5e-02 1.0e-02 2.1e-03 4.2e-04 8.2e-05  
 
         DBC   2.80 1.8e-03 9.0e-05 1.6e-05 0.0e+00 0.0e+00 0.0e+00  
         DBC   2.90 1.3e-03 5.7e-05 0.0e+00 0.0e+00 0.0e+00 0.0e+00  
         DBC   3.00 1.3e-03 6.5e-05 0.0e+00 0.0e+00 0.0e+00 0.0e+00  
         DBC   3.10 6.6e-04 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00  
 
         UBC   2.80 3.3e-02 3.5e-03 2.7e-04 8.2e-06 0.0e+00 0.0e+00  
         UBC   2.90 2.7e-02 2.6e-03 1.7e-04 0.0e+00 0.0e+00 0.0e+00  
         UBC   3.00 2.1e-02 1.9e-03 1.2e-04 8.2e-06 0.0e+00 0.0e+00  
         UBC   3.10 1.7e-02 1.7e-03 4.9e-05 0.0e+00 0.0e+00 0.0e+00  
 
 
 Reliability Indices    
 
 Limit State  Depth  15.00  16.00  17.00  18.00  19.00  20.00  
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         TLT   2.80   3.85    Inf   4.25    Inf    Inf    Inf  
         TLT   2.90   3.67   4.08   4.25    Inf    Inf    Inf  
         TLT   3.00   3.80   3.97    Inf    Inf    Inf    Inf  
         TLT   3.10   3.73   4.25   4.25   4.25    Inf    Inf  
 
         DYS   2.80   2.08   2.39   2.64   2.80   2.95   3.08  
         DYS   2.90   2.11   2.39   2.67   2.84   3.00   3.12  
         DYS   3.00   2.18   2.41   2.67   2.84   3.04   3.14  
         DYS   3.10   2.20   2.48   2.70   2.85   3.01   3.20  
 
         STS   2.80   0.71   1.27   1.92   2.64   3.05   3.41  
         STS   2.90   0.78   1.36   2.07   2.70   3.11   3.48  
         STS   3.00   0.86   1.47   2.17   2.78   3.14   3.48  
         STS   3.10   0.95   1.60   2.32   2.86   3.27   3.67  
 
         DBC   2.80   2.90   3.65   4.08    Inf    Inf    Inf  
         DBC   2.90   2.98   3.76    Inf    Inf    Inf    Inf  
         DBC   3.00   2.98   3.73    Inf    Inf    Inf    Inf  
         DBC   3.10   3.15    Inf    Inf    Inf    Inf    Inf  
 
         UBC   2.80   1.74   2.73   3.37   4.25    Inf    Inf  
         UBC   2.90   1.84   2.81   3.49    Inf    Inf    Inf  
         UBC   3.00   1.97   2.88   3.57   4.25    Inf    Inf  
         UBC   3.10   2.05   2.91   3.80    Inf    Inf    Inf  
 
 
 Acceptable/Unacceptable (Y/N) Analysis 
 
 Limit State  Depth  15.00  16.00  17.00  18.00  19.00  20.00  
 
         TLT   2.80      Y      Y      Y      Y      Y      Y  
         TLT   2.90      Y      Y      Y      Y      Y      Y  
         TLT   3.00      Y      Y      Y      Y      Y      Y  
         TLT   3.10      Y      Y      Y      Y      Y      Y  
 
         DYS   2.80      Y      Y      Y      Y      Y      Y  
         DYS   2.90      Y      Y      Y      Y      Y      Y  
         DYS   3.00      Y      Y      Y      Y      Y      Y  
         DYS   3.10      Y      Y      Y      Y      Y      Y  
 
         STS   2.80      N      N      Y      Y      Y      Y  
         STS   2.90      N      N      Y      Y      Y      Y  
         STS   3.00      N      N      Y      Y      Y      Y  
         STS   3.10      N      N      Y      Y      Y      Y  
 
         DBC   2.80      N      Y      Y      Y      Y      Y  
         DBC   2.90      N      Y      Y      Y      Y      Y  
         DBC   3.00      N      Y      Y      Y      Y      Y  
         DBC   3.10      N      Y      Y      Y      Y      Y  
 
         UBC   2.80      N      N      Y      Y      Y      Y  
         UBC   2.90      N      N      Y      Y      Y      Y  
         UBC   3.00      N      N      Y      Y      Y      Y  
         UBC   3.10      N      N      Y      Y      Y      Y  
 
 
 Optimal Design:        
 
Foundation diameter....:   17.00 
Foundation depth.......:    2.80 
Foundation volume......:  301.16 
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B.2 High Variability Case 
 
B.2.1 Source Code 
 
%% d-RBD of Gravity-base WTG Foundations 
% All limit states in one loop 
% 
% Possible limit states are: 
%   TLT = Tilt 
%   DYS = Dynamic stiffness 
%   STS = Static stiffness 
%   DBC = Drained bearing capacity 
%   UBC = Undrained bearing capacity 
% 
% Possibe distributions 
%      NR = Normal 
%      LN = Lognormal 
%      TH = Tanh (bounded) 
%      DT = Deterministic 
% NOTES: 
% 1. Always use consistent units: kg, m, s, N, Pa, J 
% 2. Do not use NR PDF for any variable with COV>0.25 as the PDF will 
%    likely produce meaningless negative numbers. 
% 3. To study parameter rankings, run program from one combination of 
%    design decision parameters. 
% 4. The number of realizations can be adjusted by adjusting the COV on the 
%    probability of failure. A COV of 0.3 or 0.4 could be used for 
%    preliminary runs. For final runs, the COV should 0.1 or less. 
% 
clear all;                           % Clear all 
fileID = fopen('dRBD_HV.txt','w');   % Change output file name, if desired. 
fprintf(fileID,'%-73s\r\n', ... 
  '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 
fprintf(fileID,'%-73s\r\n', ... 
  '--------------========= Details of dRBD Run Results ========--------------'); 
fprintf(fileID,'%-73s\r\n', ... 
  '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 
fprintf(fileID,'\r\n%73s\r\n', ... 
  '                                                                          '); 
fprintf(fileID,'%-73s\r\n', ... 
  'This output file contains details of the d-RBD run and its results.       ');  
fprintf(fileID,'%-73s\r\n', ... 
  'All input is embedded into the MATLAB program and is echoed here for      '); 
fprintf(fileID,'%-73s\r\n', ... 
  'record, verification and documentation.'); 
fprintf(fileID,'%-73s\r\n\r\n', ... 
  'All quantities are in consistent units: kg, m, s, N, Pa, J'); 
  
  
%% Main simulation parameters 
Title="High Variability Case";     % Descriptive design case title 
PLS=["TLT" "DYS" "STS" "DBC" "UBC"]; % Possible limit states 
LSO=[    1     1     1     1     1]; % 1=verify, 0=do not verify 
LST=[    1     1     1     2     2]; % Limit state type: 1=SLS,2=ULS,3-FLS 
nrvmax=10;              % Maximum number of random variables in any limit state 
B=15:1:20;              % Foundation diameter(s) 
D=2.8:0.1:3.1;          % Foundation depth(s) 
btsls=1.7;              % Target reliabilty index for SLS 
btuls=3.3;              % Target reliability index for ULS 
pfCOV=0.15;             % Desired COV of probability of failure 
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%% Computation of some prelimnary parameters 
nls=nnz(LSO);           % Number of limit states in this run 
nb=length(B);           % Number of foundation diameters 
nd=length(D);           % Number of foundation depths 
LS=strings(nls,1);LT=zeros(nls,1);YN=strings(nls,nb,nd);eg=zeros(nls,nb,nd); 
nbdt=zeros(nb,nd);Xmuf=zeros(nls,nb,nd,nrvmax); 
Voptls=zeros(nls,1);bols=zeros(nls,1);dols=zeros(nls,1); 
  
nf=zeros(nls,nb,nd);pf=zeros(nls,nb,nd);ri=zeros(nls,nb,nd); 
jp=0; 
for ip=1:length(PLS) 
  if LSO(ip)==1 
    jp=jp+1; 
    LS(jp,1)=PLS(ip); 
    LT(jp)=LST(ip); 
  end 
end 
% Compute tagert probabilities of failures (for SLS and ULS) 
if btsls<2.6 
  pftsls=1.2*exp(-2.06*btsls); 
elseif (btsls>=2.6)&&(btsls<=4.8) 
  pftsls=196*exp(-4.0*btsls); 
else 
  pftsls=1000000*exp(-5.8*btsls); 
end 
if btuls<2.6 
  pftuls=1.2*exp(-2.06*btuls); 
elseif (btuls>=2.6)&&(btuls<=4.8) 
  pftuls=196*exp(-4.0*btuls); 
else 
  pftuls=1000000*exp(-5.8*btuls); 
end 
pftsls 
pftuls 
nr1=10*nb*nd/pftsls;             % Minimum number of realizations - Estimate 1 
nr2=(1/pftsls-1)*nb*nd/pfCOV^2;  % Minimum number of realizations - Estimate 2 
nrsls=round(max([nr1 nr2]));     % Number of realizations - SLS 
nr1=10*nb*nd/pftuls;             % Minimum number of realizations - Estimate 1 
nr2=(1/pftuls-1)*nb*nd/pfCOV^2;  % Minimum number of realizations - Estimate 2 
nruls=round(max([nr1 nr2]));     % Number of realizations - ULS 
nrmax=max(nruls,nrsls) 
%nrmax=2000; 
nrsls=nrmax;nruls=nrmax;ptot=zeros(nrmax,1);r=zeros(nrmax,1); 
g=zeros(nls,nrmax);aeff=zeros(nls,nrmax);ecc=zeros(nls,nrmax); 
%% Print results to output text file 
fprintf(fileID,'%40s %-40s\r\n','Design case title......................:', ... 
  Title); 
fprintf(fileID,'%40s %7.2f\r\n','Target reliabilty index for SLS........:', ... 
  btsls); 
fprintf(fileID,'%40s %7.4f\r\n','Target probability of failure for SLS..:', ... 
  pftsls); 
fprintf(fileID,'%40s %7.2f\r\n','Target reliabilty index for ULS........:', ... 
  btuls); 
fprintf(fileID,'%40s %7.5f\r\n','Target probability of failure for ULS..:', ... 
  pftuls); 
fprintf(fileID,'%40s %s\r\n','Foundation diameters...................:', ... 
  sprintf('%5.1f ', B)); 
fprintf(fileID,'%40s %s\r\n','Foundation depths......................:', ... 
  sprintf('%5.1f ', D)); 
fprintf(fileID,'%40s %7i\r\n','Number of realizations all combinations:', ... 
  nrmax); 
fprintf(fileID,'%40s %7i\r\n','Number of design decision combinations.:', ... 
  nb*nd); 
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fprintf(fileID,'%40s %7i\r\n','Number of realizations per combination.:', ... 
  round(nrmax/(nb*nd))); 
  
%% Fixed dimensions, other deterministic parameters & derived quantities 
% 
% Fixed dimensions and parameters 
% 
he=0.4;               % Base edge height 
hm=2.2;               % Base middle height 
hsu=0.15;             % Pedestal stickup 
bp=5.4;               % Pedestal diameter 
bb=5.4;               % Base top diameter 
gconc=23500;          % Unit weight of concrete 
gbsoil=17000;         % Unit weight of backfill soil 
Pwtg=2.275e6;         % Weight of WTG 
% 
% Derived quantities 
% 
hp=zeros(nd,1);Af=zeros(nb,1);Vb1=zeros(nb,1);Vb2=zeros(nb,1);Vp=zeros(nd,1); 
Vf=zeros(nb,nd);htp=zeros(nd);Vsoil=zeros(nb,nd);Pc=zeros(nb,nd); 
Ps=zeros(nb,nd);Ptot=zeros(nb,nd); 
ncomb=zeros(nb,nd);beta=zeros(nb,nd); 
Ap=0.25*pi*bp^2;                          % Pedestal area 
Ab=0.25*pi*bb^2;                          % Base top area 
for ib=1:nb 
  for id=1:nd 
    hp(id)=D(id)+hsu-hm;                  % Pedestal height 
    Af(ib)=0.25*pi*B(ib)^2;               % Footing area 
    Vb1(ib)=Af(ib)*he;                    % Volume of lower portion of base 
    Vb2(ib)=(Ab+(Ab*Af(ib))^0.5+ ...      % Volume of tapered portion of base 
    Af(ib))*(hm-he)/3;                
    Vp(id)=Ap*hp(id);                     % Pedestal volume 
    Vf(ib,id)=Vb1(ib)+Vb2(ib)+Vp(id);     % Foundation volume 
    htp(id)=D(id)+hsu-hp(id)-he;          % Height of tapered portion of footing 
    Vsoil(ib,id)=Af(ib)*(htp(id)+ ... 
    hp(id)-hsu)-Ap*(hp(id)-hsu)-Vb2(ib);  % Volume of backfill soil 
    Pc(ib,id)=Vf(ib,id)*gconc;            % Weight of foundation concrete              
    Ps(ib,id)=Vsoil(ib,id)*gbsoil;        % Weight of backfill soil 
    Ptot(ib,id)=Pwtg+Pc(ib,id)+Ps(ib,id); % Total vertical load 
  end 
end 
fprintf(fileID,'\r\n %-45s\r\n','Fixed quantities & Foundation Dimensions:'); 
fprintf(fileID,'%-35s %8.2f\r\n','Pedestal diameter.................:',bp); 
fprintf(fileID,'%-35s %8.2f\r\n','Base top diameter.................:',bb); 
fprintf(fileID,'%-35s %8.2f\r\n','Pedestal stick-up.................:',hsu); 
fprintf(fileID,'%-35s %8.2f\r\n','Base middle thickness.............:',hm); 
fprintf(fileID,'%-35s %8.2f\r\n','Base edge thickness...............:',he); 
fprintf(fileID,'%-35s %8.1f\r\n','Concrete unit weight..............:',gconc); 
fprintf(fileID,'%-35s %8.1f\r\n','Backfill soil unit weight.........:',gbsoil); 
fprintf(fileID,'%-35s %5.2e\r\n','Self weight of WTG................:',Pwtg); 
fprintf(fileID,'\r\n %-22s\r\n\r\n',... 
  'Foundation Volumes for all B-D Combinations:'); 
fprintf(fileID,'%-40s\r\n','        Foundation Diameter'); 
fprintf(fileID,'%6s %s\r\n\r\n',' Depth',sprintf('%7.2f ', B)); 
for id=1:nd 
  fprintf(fileID,'%6.2f %s\r\n',D(id), ... 
    sprintf('%7.2f ',Vf(:,id))); 
end 
fprintf(fileID,'\r\n'); 
  
  
%% Plot possible foundation geometries 
color=["r" "g" "b" "m" "c" "k"]; 
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figure('name', 'Foundation Geometries'); 
 for ib=1:nb 
    for id=1:nd 
     clr=color(randi(6)); 
     xf=[-B(ib)/2 -B(ib)/2 -bb/2 -bp/2 ... 
       -bp/2 bp/2 bp/2 bb/2 0.5*B(ib) B(ib)/2 -B(ib)/2]; 
     yf=[0 he hm hm hm+hp(id) hm+hp(id) hm hm he 0 0]; 
     xgl=[-B(ib)/2 -bp/2]; 
     xgr=[bp/2 B(ib)/2]; 
     yg=[D(id) D(id)]; 
     plot(xf,yf) 
     daspect([1 1 1]) 
     hold on 
     plot(xgl,yg,clr) 
     plot(xgr,yg,clr) 
    end     
 end 
set(gca,'xlim',[-B(nb)/2-B(nb)/10 B(nb)/2+B(nb)/10]) 
set(gca,'ylim',[-0.2*D(nd) 1.2*D(nd)]) 
hold off 
  
% Generate design decision variable values (uniform distribution) 
b=B(randi(nb,nrmax,1)); 
d=D(randi(nd,nrmax,1)); 
for ir=1:nrmax 
    r(ir)=0.5*b(ir); 
    for ib=1:nb 
      for id=1:nd 
        if (b(ir)==B(ib))&&(d(ir)==D(id)) 
          nbdt(ib,id)=nbdt(ib,id)+1; 
          ptot(ir)=Ptot(ib,id); 
        end 
      end 
    end 
end 
% 
% Loop on selected limit states 
for ils=1:nls 
  
%% Tilt limit state 
  if LS(ils)=="TLT" 
    tiltmax=0.17; tiltmaxr=tiltmax*pi/180.;       % Maximum allowed tilt 
    etilt=zeros(nb,nd); 
    % Random Variables 
    % 
    RV   = ["Mmnt"   "Dens"   "prat" "  Vs"   "sstn"   "tmax" "alpha"  "Itha"]; 
    Xdis = [  "LN"     "NR"     "NR"   "LN"     "LN"     "LN"    "LN"    "LN"]; 
    Xmu  = [2.0e+7   1750.0     0.35  200.0   0.0005   1.0e+5     0.9    4.16]; 
    Xcov = [  0.25     0.10     0.10    0.6     0.30     0.50     0.2    0.10]; 
    Xmin = [   0.0      0.0     0.25    0.0      0.0      0.0     0.0     0.0]; 
    Xmax = [   0.0      0.0     0.45    0.0      0.0      0.0     0.0     0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Tilt Limit State:'); 
    fprintf(fileID,'%-35s %7.2f\r\n','Maximum allowed tilt (degrees)...:', ... 
      tiltmax); 
    fprintf(fileID,'\r\n %-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
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    fprintf(fileID,'\r\n'); 
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Tilt value at the means 
    M      = Xmu(1); 
    den    = Xmu(2); 
    pr     = Xmu(3); 
    Vs     = Xmu(4); 
    ss     = Xmu(5); 
    tmax   = Xmu(6); 
    alpha  = Xmu(7); 
    itheta = Xmu(8); 
    for ib=1:nb 
      for id=1:nd 
        etilt(ib,id)  = atan(M*(1-pr)*(1+(ss*den*Vs^2/tmax)^alpha)* ... 
          itheta/(2*den*Vs^2*B(ib)^3))*180./pi;       
        eg(ils,ib,id) = tan(tiltmaxr)-M*(1-pr)*(1+(ss*den*Vs^2/tmax)^alpha)* ... 
          itheta/(2*den*Vs^2*B(ib)^3); 
      end 
    end 
%    etilt 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0; 
          0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0]; 
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
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        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      M        = crv(ir,1); 
      den      = crv(ir,2); 
      pr       = crv(ir,3); 
      Vs       = crv(ir,4); 
      ss       = crv(ir,5); 
      tmax     = crv(ir,6); 
      alpha    = crv(ir,7); 
      itheta   = crv(ir,8); 
  
      g(ils,ir)   = tan(tiltmaxr)-M*(1-pr)*(1+(ss*den*Vs^2/tmax)^alpha)* ... 
                 itheta/(2*den*Vs^2*b(ir)^3); 
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/(Xsig(irv)/ ... 
              sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
%% Dynamic stiffness limit state 
   elseif LS(ils)=="DYS" 
    Kdynmin=5e10;               % Minimum stiffness (Nm/rad) 
    eKdyn=zeros(nb,nd); 
    % 
    % Random Variables 
    % 
    RV   = [ "Dens"    "Prat"   "  Vs" "Hbed"]; 
    Xdis = [   "NR"      "NR"     "LN"   "LN"]; 
    Xmu  = [ 1750.0      0.35    200.0    8.5]; 
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    Xcov = [   0.10      0.10     0.60   0.30]; 
    Xmin = [    0.0       0.0      0.0    0.0]; 
    Xmax = [    0.0       0.0      0.0    0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Dynamic Stiffness Limit State:'); 
    fprintf(fileID,'%-35s %7.2e\r\n','Minimum required stiffness........:', ... 
      Kdynmin); 
    fprintf(fileID,'\r\n %-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
     
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Tilt value at the means 
    den    = Xmu(1); 
    pr     = Xmu(2); 
    Vs     = Xmu(3); 
    Hb     = Xmu(4); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        eKdyn(ib,id)=8.*den*Vs^2*R^3*(1+2*D(id)/R)* ... 
          (1+0.7*D(id)/Hb)*(1+R/(6*Hb))/(3*(1-pr)); 
        eg(ils,ib,id)  = eKdyn(ib,id)-Kdynmin; 
      end 
    end 
%    eKdyn 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0;  
          0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 1.0];  
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
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        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      den      = crv(ir,1); 
      pr       = crv(ir,2); 
      Vs       = crv(ir,3); 
      Hb       = crv(ir,4); 
      R=0.5*b(ir); 
      g(ils,ir)   = 8.0*den*Vs^2*R^3*(1+2*d(ir)/R)* ... 
                 (1+0.7*d(ir)/Hb)*(1+R/(6*Hb))/(3*(1-pr))-Kdynmin; 
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/ ... 
              (Xsig(irv)/sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
%% Static stiffness limit state 
   elseif LS(ils)=="STS" 
    Kstamin=1e10;         % Minimum stiffness (Nm/rad) 
    eKsta=zeros(nb,nd); 
    % 
    % Random Variables 
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    % 
    RV   = ["Momt"  "Dens"  "  Vs" "Tmax" "sstn" "Alfa" "Hbed" "Prat"]; 
    Xdis = [  "LN"    "NR"    "LN"   "LN"   "LN"   "NR"   "LN"   "NR"]; 
    Xmu  = [  5.0e7 1750.0   200.0  1.0e5  5.e-4   0.90    8.5   0.35]; 
    Xcov = [   0.25   0.10    0.60   0.50    0.3   0.20   0.30   0.10]; 
    Xmin = [    0.0    0.0     0.0    0.0    0.0    0.0    0.0    0.0]; 
    Xmax = [    0.0    0.0     0.0    0.0    0.0    0.0    0.0    0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Static Stiffness Limit State:'); 
    fprintf(fileID,'%-35s %7.2e\r\n','Minimum required stiffness........:' ... 
      ,Kstamin); 
    fprintf(fileID,'\r\n %-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
     
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Static stiffness values at the means 
    M     = Xmu(1); 
    den   = Xmu(2); 
    Vs    = Xmu(3); 
    Tmax  = Xmu(4); 
    sstrn = Xmu(5); 
    alfa  = Xmu(6); 
    Hb    = Xmu(7); 
    pr    = Xmu(8); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        ec=M/Ptot(ib,id); 
        Aeff=2*(R^2*acos(min(1,ec/R))-ec*sqrt(R^2-ec^2)); 
        be=2*(R-ec); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(Aeff*le/be); 
        beff=leff*be/le; 
        eKsta(ib,id)=den*Vs^2*beff^3*(1+4*D(id)/beff)*(1+0.7*D(id)/Hb)* ... 
          (1+beff/12/Hb)/(3*(1-pr)*(1+(sstrn*den*Vs^2/Tmax)^alfa)); 
        eg(ils,ib,id)=eKsta(ib,id)-Kstamin; 
      end 
    end 
%    eKsta 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;  
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          0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0; 
          0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0]; 
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
        M     = crv(ir,1); 
        den   = crv(ir,2); 
        Vs    = crv(ir,3); 
        Tmax  = crv(ir,4); 
        sstrn = crv(ir,5); 
        alfa  = crv(ir,6); 
        Hb    = crv(ir,7); 
        pr    = crv(ir,8); 
        R     = r(ir); 
        ecc(ils,ir)=min(M/ptot(ir),0.9*R); 
        EC=ecc(ils,ir); 
        aeff(ils,ir)=2*(R^2*acos(min(1,EC/R))-EC*sqrt(R^2-EC^2)); 
        be=2*(R-EC); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(aeff(ils,ir)*le/be); 
        beff=leff*be/le; 
        g(ils,ir)=den*Vs^2*beff^3*(1+4*d(ir)/beff)*(1+0.7*d(ir)/Hb)* ... 
          (1+beff/12/Hb)/(3*(1-pr)*(1+(sstrn*den*Vs^2/Tmax)^alfa))-Kstamin; 
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
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          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/ ... 
              (Xsig(irv)/sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
      
%% Drained bearing capacity limit state 
   elseif LS(ils)=="DBC" 
    % 
    % Random Variables 
    % 
    RV =   ["Momt"  "Horz"  "eDen"  "ePhi"         "eCoh"]; 
    Xdis = [  "LN"    "LN"    "NR"    "LN"           "LN"]; 
    Xmu  = [  5.0e7  6.6e5  17500.    25.0*pi/180.  5.0e4]; 
    Xcov = [   0.25   0.25    0.10    0.45           0.30]; 
    Xmin = [    0.0    0.0     0.0     0.0            0.0]; 
    Xmax = [    0.0    0.0     0.0     0.0            0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Drained Bearing Capacity Limit State:'); 
    fprintf(fileID,'%-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
  
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Static stiffness values at the means 
    M    = Xmu(1); 
    H    = Xmu(2); 
    eDen = Xmu(3); 
    ePhi = Xmu(4); 



256 
 

    eCoh = Xmu(5); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        ec=M/Ptot(ib,id); 
        Aeff=2*(R^2*acos(min(1,ec/R))-ec*sqrt(R^2-ec^2)); 
        be=2*(R-ec); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(Aeff*le/be); 
        beff=leff*be/le; 
        nq=exp(pi*tan(ePhi))*(1+sin(ePhi))/(1-sin(ePhi)); 
        nc=(nq-1)*cot(ePhi); 
        ng=1.5*(nq-1)*tan(ePhi); 
        sc=1+0.2*beff/leff; 
        dc=1+0.4*D(id)/beff; 
        ic=(1-H/(Ptot(ib,id)+Aeff*eCoh*cot(ePhi)))^2; 
        sq=1+0.2*beff/leff; 
        dq=1+1.2*(D(id)/beff)*tan(ePhi)*(1.-sin(ePhi))^2; 
        iq=ic; 
        sg=1-0.4*beff/leff; 
        dg=1.0; 
        ig=ic^2; 
        eg(ils,ib,id)=eCoh*nc*sc*dc*ic+eDen*D(id)*nq*sq*dq*iq+ ... 
          0.5*eDen*beff*ng*sg*dg*ig-Ptot(ib,id)/Aeff; 
      end 
    end 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0 0.0;  
          0.0 0.0 1.0 0.0 0.0;  
          0.0 0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 0.0 1.0]; 
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
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%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      M    = crv(ir,1); 
      H    = crv(ir,2); 
      eDen = crv(ir,3); 
      ePhi = crv(ir,4); 
      eCoh = crv(ir,5); 
      R=r(ir); 
      ecc(ils,ir)=min(M/ptot(ir),0.9*R); 
      EC=ecc(ils,ir); 
      aeff(ils,ir)=2*(R^2*acos(min(1,EC/R))-EC*sqrt(max(0,R^2-EC^2))); 
      be=2*(R-EC); 
      le=2*R*sqrt(1-(1-be/(2*R))^2); 
      leff=sqrt(aeff(ils,ir)*le/be); 
      beff=leff*be/le; 
   
      nq=exp(pi*tan(ePhi))*(1+sin(ePhi))/(1-sin(ePhi)); 
      nc=(nq-1)*cot(ePhi); 
      ng=1.5*(nq-1)*tan(ePhi); 
      sc=1+0.2*beff/leff; 
      dc=1+0.4*D(id)/beff; 
      ic=(1-H/(ptot(ir)+aeff(ils,ir)*eCoh*cot(ePhi)))^2; 
      sq=1+0.2*beff/leff; 
      dq=1+1.2*(d(ir)/beff)*tan(ePhi)*(1.-sin(ePhi))^2; 
      iq=ic; 
      sg=1-0.4*beff/leff; 
      dg=1.0; 
      ig=ic^2; 
      g(ils,ir)=eCoh*nc*sc*dc*ic+eDen*d(ir)*nq*sq*dq*iq+ ... 
          0.5*eDen*beff*ng*sg*dg*ig-ptot(ir)/aeff(ils,ir); 
  
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/ ... 
              (Xsig(irv)/sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
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    end          
% 
%% Undrained bearing capacity limit state 
   elseif LS(ils)=="UBC" 
    % 
    % Random Variables 
    % 
    RV   = ["Momt"  "Horz"  "  Su"  "tDen"]; 
    Xdis = [  "LN"    "LN"    "LN"    "NR"]; 
    Xmu  = [  5.0e7  6.6e5   1.0e5 17500.0]; 
    Xcov = [   0.25   0.25    0.40    0.10]; 
    Xmin = [    0.0    0.0     0.0     0.0]; 
    Xmax = [    0.0    0.0     0.0     0.0]; 
    % Size arrays 
    nrv=length(RV);L=zeros(nrv,nrv);cmut=zeros(nrv,nrv);cm=zeros(nrv,nrv); 
    Z=zeros(nrv,1);RVS=strings(nrv,1);Xsig=zeros(nrv,1);p=zeros(nrv); 
    q=zeros(nrv); 
    % 
    fprintf(fileID,'\r\n %-45s\r\n','Undrained Bearing Capacity Limit State:'); 
    fprintf(fileID,'%-12s %s\r\n','Variable',sprintf(' %8s  ', RV)); 
    fprintf(fileID,'%-12s %s\r\n','Distribution',sprintf(' %8s  ', Xdis)); 
    fprintf(fileID,'%-12s %s\r\n','Mean Value',sprintf(' %5.2e  ', Xmu)); 
    fprintf(fileID,'%-12s %s\r\n','COV',sprintf(' %8.2f  ', Xcov)); 
    fprintf(fileID,'\r\n'); 
    % Parameters of underlying normal PDF's 
    for irv=1:nrv 
     Xsig(irv)=Xmu(irv)*Xcov(irv); 
     if Xdis(irv)=="LN" 
       q(irv)=sqrt(log(1+Xcov(irv)^2)); 
       p(irv)=log(Xmu(irv))-0.5*q(irv)^2; 
     elseif Xdis(irv)=="TH" 
       p(irv)=2.*pi/(0.46^2*(Xmax(irv)-Xmin(irv)^2-Xsig(irv)^2))^0.5; 
       q(irv)=0; 
     end 
    end 
    % Static stiffness values at the means 
    M    = Xmu(1); 
    H    = Xmu(2); 
    Su   = Xmu(3); 
    tDen = Xmu(4); 
    for ib=1:nb 
      for id=1:nd 
        R=0.5*B(ib); 
        ec=M/Ptot(ib,id); 
        Aeff=2*(R^2*acos(min(1,ec/R))-ec*sqrt(max(0,R^2-ec^2))); 
        be=2*(R-ec); 
        le=2*R*sqrt(1-(1-be/(2*R))^2); 
        leff=sqrt(Aeff*le/be); 
        beff=leff*be/le; 
        nc0=5.14; 
        sc0=1+0.2*beff/leff; 
        ic0=0.5+0.5*sqrt(max(0,1-H/(Aeff*Su))); 
        eg(ils,ib,id)=Su*nc0*sc0*ic0+tDen*D(id)-Ptot(ib,id)/Aeff; 
      end 
    end 
%    eg(ils,:,:) 
    % 
    % Define cross-correlation matrix [nrv x nrv] 
    icopt="No"; 
    % For simplicity, enter upper triangular only 
    % Ignore the cross correlation matrix if icopt="No" 
    cmut=[1.0 0.0 0.0 0.0;  
          0.0 1.0 0.0 0.0;  



259 
 

          0.0 0.0 1.0 0.0;  
          0.0 0.0 0.0 1.0];  
    cm=cmut+transpose(cmut)-eye(nrv); 
    L = chol(cm,'lower'); 
     
    % Generate standard normal variable values & apply cross-correlation 
    % (if applicable) & scale back up to appropriate PDF 
    crvsn=zeros(nrmax,nrv);crv=zeros(nrmax,nrv); 
    rvsn=normrnd(0,1,nrmax,nrv); 
    for ir=1:nrmax 
      if icopt=="Yes" 
        crvsn(ir,:)=transpose(rvsn(ir,:)*transpose(L)); 
      else 
        crvsn(ir,:)=rvsn(ir,:); 
      end 
      % Scale back up to appropriate PDF 
      for irv=1:nrv 
        if Xdis(irv)=="NR" 
          crv(ir,irv)=Xsig(irv)*crvsn(ir,irv)+Xmu(irv); 
        elseif Xdis(irv)=="LN" 
          crv(ir,irv)=exp(q(irv)*crvsn(ir,irv)+p(irv)); 
        elseif Xdis(irv)=="TH" 
          x=p(irv)*1/(2*pi);     %Fix this. It needs to be G variate 
          crv(ir,irv)=Xmin(irv)+0.5*(Xmax(irv)-Xmin(irv))*(1+tanh(x)); 
        end 
      end 
    end     
% 
%   Loop on realizations 
% 
    for ir=1:nrmax 
      % Apply cross-correlations 
      % Evaluate Performance function for each realizations, ir 
      M    = crv(ir,1); 
      H    = crv(ir,2); 
      Su   = crv(ir,3); 
      tDen = crv(ir,4); 
      R=r(ir); 
      ecc(ils,ir)=min(M/ptot(ir),0.8*R); 
      EC=ecc(ils,ir); 
      aeff(ils,ir)=2*(R^2*acos(min(1,EC/R))-EC*sqrt(max(0,R^2-EC^2))); 
      be=2*(R-EC); 
      le=2*R*sqrt(1-(1-be/(2*R))^2); 
      leff=sqrt(aeff(ils,ir)*le/be); 
      beff=leff*be/le;  
      nc0=5.14; 
      sc0=1+0.2*beff/leff; 
      ic0=0.5+0.5*sqrt(max(0,1-H/(aeff(ils,ir)*Su))); 
      g(ils,ir)=Su*nc0*sc0*ic0+tDen*d(ir)-ptot(ir)/aeff(ils,ir); 
  
      for ib=1:nb 
        for id=1:nd 
          if (b(ir)==B(ib))&&(d(ir)==D(id))&&(g(ils,ir)<=0) 
            nf(ils,ib,id)=nf(ils,ib,id)+1; 
            for irv=1:nrv 
              Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)+crv(ir,irv); 
            end 
          end 
        end 
      end 
    end 
%     
% Parameter ranking 
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% 
    if nb*nd==1 
      for ib=1:nb 
        for id=1:nd 
          for irv=1:nrv 
            Xmuf(ils,ib,id,irv)=Xmuf(ils,ib,id,irv)/nf(ils,ib,id); 
            Z(irv)=abs(Xmu(irv)-Xmuf(ils,ib,id,irv))/(Xsig(irv)/ ... 
              sqrt(nf(ils,ib,id))); 
          end 
          [ZS,IS]=sort(Z); 
          NZS=ZS/norm(Z); 
          for irv=1:nrv;RVS(irv)=RV(IS(irv));end 
        end 
      end 
      RVS 
      NZS 
    end 
   else 
    status="Not supposed to be here" 
   end 
end 
for ils=1:nls 
  for ib=1:nb 
    for id=1:nd 
      pf(ils,ib,id)=nf(ils,ib,id)*nb*nd/nrmax;  
        if pf(ils,ib,id)>0.006 
          ri(ils,ib,id)=log(1.2/pf(ils,ib,id))/2.06; 
        elseif (pf(ils,ib,id)<=0.006)&&(pf(ils,ib,id)>=10^-6) 
          ri(ils,ib,id)=log(196/pf(ils,ib,id))/4.0; 
        else 
          ri(ils,ib,id)=log(1000000/pf(ils,ib,id))/5.8; 
        end 
      if LT(ils)==1 
        if ri(ils,ib,id)<=btsls 
          YN(ils,ib,id)="N"; 
        else 
          YN(ils,ib,id)="Y"; 
        end 
      else 
        if ri(ils,ib,id)<=btuls 
          YN(ils,ib,id)="N"; 
        else 
          YN(ils,ib,id)="Y"; 
        end         
      end         
    end 
  end 
end 
nf 
pf 
ri 
YN 
for ils=1:nls 
%  Voptls(ils)=max(Vf,[],'all'); 
  Voptls(ils)=max(max(Vf)); 
  bols(ils)=B(nb); 
  dols(ils)=D(nd); 
  for ib=nb:-1:1 
    for id=nd:-1:1 
      if (YN(ils,ib,id)=="Y")&&(Vf(ib,id)<Voptls(ils)) 
        Voptls(ils)=Vf(ib,id); 
        bols(ils)=B(ib); 
        dols(ils)=D(id); 
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      end 
    end 
  end 
end 
Vopt=min(Voptls); 
for ils=1:nls 
  if Voptls(ils)>Vopt 
    Vopt=Voptls(ils); 
    bo=bols(ils); 
    do=dols(ils); 
  end 
end 
%Voptls 
%bols 
%dols 
Vopt 
bo 
do 
  
%hold off 
%for ils=1:nls 
%  figure('name', 'Histogram g'); 
%  daspect auto 
%  histogram(g(ils,:)) 
%end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Probabilities of Failure'); 
fprintf(fileID,'%12s %6s %s\r\n\r\n',' Limit State',' Depth', ... 
  sprintf('%7.2f ', B)); 
for ils=1:nls 
  for id=1:nd 
    fprintf(fileID,'%12s %6.2f %s\r\n',LS(ils),D(id), ... 
      sprintf('%6.1e ',pf(ils,:,id))); 
  end 
  fprintf(fileID,'\r\n'); 
end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Reliability Indices'); 
fprintf(fileID,'%12s %6s %s\r\n\r\n',' Limit State',' Depth', ... 
  sprintf('%6.2f ', B)); 
for ils=1:nls 
  for id=1:nd 
    fprintf(fileID,'%12s %6.2f %s\r\n',LS(ils),D(id), ... 
      sprintf('%6.2f ',ri(ils,:,id))); 
  end 
  fprintf(fileID,'\r\n'); 
end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Acceptable/Unacceptable (Y/N) Analysis'); 
fprintf(fileID,'%12s %6s %s\r\n\r\n',' Limit State',' Depth', ... 
  sprintf('%6.2f ', B)); 
for ils=1:nls 
  for id=1:nd 
    fprintf(fileID,'%12s %6.2f %s\r\n',LS(ils),D(id), ... 
      sprintf('%6s ',YN(ils,:,id))); 
  end 
  fprintf(fileID,'\r\n'); 
end 
fprintf(fileID,'\r\n %-22s\r\n\r\n','Optimal Design:'); 
fprintf(fileID,'%-25s %6.2f\r\n','Foundation diameter....:',bo); 
fprintf(fileID,'%-25s %6.2f\r\n','Foundation depth.......:',do); 
fprintf(fileID,'%-25s %6.2f\r\n','Foundation volume......:',Vopt); 
fclose(fileID); 
 
 



262 
 

B.2.2 Output 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--------------========= Details of dRBD Run Results ========-------------- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
                                                                           
This output file contains details of the d-RBD run and its results.        
All input is embedded into the MATLAB program and is echoed here for       
record, verification and documentation.                                   
All quantities are in consistent units: kg, m, s, N, Pa, J                
 
Design case title......................: High Variability Case                    
Target reliabilty index for SLS........:    1.70 
Target probability of failure for SLS..:  0.0362 
Target reliabilty index for ULS........:    3.30 
Target probability of failure for ULS..: 0.00036 
Foundation diameters...................:  15.0  16.0  17.0  18.0  19.0  20.0  
Foundation depths......................:   2.8   2.9   3.0   3.1  
Number of realizations all combinations: 2939695 
Number of design decision combinations.:      24 
Number of realizations per combination.:  122487 
 
 Fixed quantities & Foundation Dimensions:     
Pedestal diameter.................:     5.40 
Base top diameter.................:     5.40 
Pedestal stick-up.................:     0.15 
Base middle thickness.............:     2.20 
Base edge thickness...............:     0.40 
Concrete unit weight..............:  23500.0 
Backfill soil unit weight.........:  17000.0 
Self weight of WTG................: 2.28e+06 
 
 Foundation Volumes for all B-D Combinations: 
 
        Foundation Diameter              
 Depth   15.00   16.00   17.00   18.00   19.00   20.00  
 
  2.80  245.80  272.69  301.16  331.19  362.80  395.97  
  2.90  248.09  274.99  303.45  333.48  365.09  398.26  
  3.00  250.38  277.28  305.74  335.77  367.38  400.55  
  3.10  252.67  279.57  308.03  338.06  369.67  402.84  
 
 
 Tilt Limit State:                             
Maximum allowed tilt (degrees)...:     0.17 
 
 Variable          Mmnt       Dens       prat         Vs       sstn       tmax      alpha       
Itha   
Distribution        LN         NR         NR         LN         LN         LN         LN         
LN   
Mean Value    2.00e+07   1.75e+03   3.50e-01   2.00e+02   5.00e-04   1.00e+05   9.00e-
01   4.16e+00   
COV               0.25       0.10       0.10       0.60       0.30       0.50       0.20       
0.10   
 
 
 Dynamic Stiffness Limit State:                
Minimum required stiffness........: 5.00e+10 
 
 Variable          Dens       Prat         Vs       Hbed   
Distribution        NR         NR         LN         LN   
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Mean Value    1.75e+03   3.50e-01   2.00e+02   8.50e+00   
COV               0.10       0.10       0.60       0.30   
 
 Static Stiffness Limit State:                 
Minimum required stiffness........: 1.00e+10 
 
 Variable          Momt       Dens         Vs       Tmax       sstn       Alfa       Hbed       
Prat   
Distribution        LN         NR         LN         LN         LN         NR         LN         
NR   
Mean Value    5.00e+07   1.75e+03   2.00e+02   1.00e+05   5.00e-04   9.00e-01   8.50e+00   
3.50e-01   
COV               0.25       0.10       0.60       0.50       0.30       0.20       0.30       
0.10   
 
 Drained Bearing Capacity Limit State:         
Variable          Momt       Horz       eDen       ePhi       eCoh   
Distribution        LN         LN         NR         LN         LN   
Mean Value    5.00e+07   6.60e+05   1.75e+04   4.36e-01   5.00e+04   
COV               0.25       0.25       0.10       0.45       0.30   
 
 
 Undrained Bearing Capacity Limit State:       
Variable          Momt       Horz         Su       tDen   
Distribution        LN         LN         LN         NR   
Mean Value    5.00e+07   6.60e+05   1.00e+05   1.75e+04   
COV               0.25       0.25       0.40       0.10   
 
 
 Probabilities of Failure 
 
 Limit State  Depth   15.00   16.00   17.00   18.00   19.00   20.00  
 
         TLT   2.80 5.4e-03 2.9e-03 1.7e-03 1.1e-03 6.8e-04 3.4e-04  
         TLT   2.90 5.0e-03 3.0e-03 1.7e-03 1.2e-03 6.6e-04 4.1e-04  
         TLT   3.00 5.2e-03 3.1e-03 1.7e-03 1.1e-03 6.4e-04 5.5e-04  
         TLT   3.10 5.2e-03 2.8e-03 1.7e-03 1.1e-03 6.6e-04 3.6e-04  
 
         DYS   2.80 8.9e-02 6.7e-02 4.9e-02 3.7e-02 2.8e-02 2.0e-02  
         DYS   2.90 8.6e-02 6.4e-02 4.8e-02 3.6e-02 2.7e-02 2.0e-02  
         DYS   3.00 8.4e-02 6.2e-02 4.6e-02 3.3e-02 2.6e-02 1.9e-02  
         DYS   3.10 8.1e-02 6.0e-02 4.5e-02 3.4e-02 2.4e-02 1.8e-02  
 
         STS   2.80 3.9e-01 2.1e-01 1.0e-01 4.6e-02 2.2e-02 1.1e-02  
         STS   2.90 3.6e-01 1.8e-01 8.7e-02 4.0e-02 2.0e-02 9.4e-03  
         STS   3.00 3.3e-01 1.6e-01 7.5e-02 3.5e-02 1.7e-02 8.3e-03  
         STS   3.10 3.0e-01 1.5e-01 6.6e-02 3.2e-02 1.4e-02 7.6e-03  
 
         DBC   2.80 1.0e-02 1.8e-03 2.1e-04 2.4e-05 4.1e-05 1.6e-05  
         DBC   2.90 8.3e-03 1.4e-03 1.8e-04 1.6e-05 8.2e-06 8.2e-06  
         DBC   3.00 6.5e-03 1.2e-03 1.6e-04 2.4e-05 3.3e-05 1.6e-05  
         DBC   3.10 5.3e-03 6.9e-04 6.5e-05 2.4e-05 8.2e-06 0.0e+00  
 
         UBC   2.80 7.3e-02 1.8e-02 3.2e-03 4.4e-04 9.0e-05 0.0e+00  
         UBC   2.90 6.5e-02 1.4e-02 2.5e-03 3.0e-04 4.9e-05 0.0e+00  
         UBC   3.00 5.5e-02 1.2e-02 2.2e-03 2.2e-04 4.9e-05 0.0e+00  
         UBC   3.10 4.7e-02 1.0e-02 1.6e-03 1.6e-04 2.4e-05 0.0e+00  
 
 
 Reliability Indices    
 
 Limit State  Depth  15.00  16.00  17.00  18.00  19.00  20.00  
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         TLT   2.80   2.62   2.78   2.91   3.03   3.14   3.31  
         TLT   2.90   2.65   2.77   2.91   3.00   3.15   3.27  
         TLT   3.00   2.64   2.76   2.91   3.03   3.16   3.20  
         TLT   3.10   2.63   2.79   2.91   3.02   3.15   3.30  
 
         DYS   2.80   1.26   1.40   1.55   1.69   1.83   1.99  
         DYS   2.90   1.28   1.43   1.56   1.70   1.85   2.00  
         DYS   3.00   1.29   1.44   1.58   1.75   1.87   2.02  
         DYS   3.10   1.31   1.46   1.60   1.73   1.90   2.04  
 
         STS   2.80   0.54   0.86   1.21   1.58   1.95   2.29  
         STS   2.90   0.59   0.91   1.27   1.65   2.00   2.36  
         STS   3.00   0.63   0.97   1.35   1.72   2.08   2.41  
         STS   3.10   0.68   1.02   1.41   1.77   2.16   2.45  
 
         DBC   2.80   2.31   2.90   3.43   3.97   3.85   4.08  
         DBC   2.90   2.41   2.96   3.48   4.08   4.25   4.25  
         DBC   3.00   2.53   3.00   3.51   3.97   3.90   4.08  
         DBC   3.10   2.63   3.14   3.73   3.97   4.25    Inf  
 
         UBC   2.80   1.36   2.04   2.75   3.25   3.65    Inf  
         UBC   2.90   1.42   2.15   2.81   3.35   3.80    Inf  
         UBC   3.00   1.49   2.22   2.85   3.42   3.80    Inf  
         UBC   3.10   1.57   2.32   2.93   3.51   3.97    Inf  
 
 
 Acceptable/Unacceptable (Y/N) Analysis 
 
 Limit State  Depth  15.00  16.00  17.00  18.00  19.00  20.00  
 
         TLT   2.80      Y      Y      Y      Y      Y      Y  
         TLT   2.90      Y      Y      Y      Y      Y      Y  
         TLT   3.00      Y      Y      Y      Y      Y      Y  
         TLT   3.10      Y      Y      Y      Y      Y      Y  
 
         DYS   2.80      N      N      N      N      Y      Y  
         DYS   2.90      N      N      N      N      Y      Y  
         DYS   3.00      N      N      N      Y      Y      Y  
         DYS   3.10      N      N      N      Y      Y      Y  
 
         STS   2.80      N      N      N      N      Y      Y  
         STS   2.90      N      N      N      N      Y      Y  
         STS   3.00      N      N      N      Y      Y      Y  
         STS   3.10      N      N      N      Y      Y      Y  
 
         DBC   2.80      N      N      Y      Y      Y      Y  
         DBC   2.90      N      N      Y      Y      Y      Y  
         DBC   3.00      N      N      Y      Y      Y      Y  
         DBC   3.10      N      N      Y      Y      Y      Y  
 
         UBC   2.80      N      N      N      N      Y      Y  
         UBC   2.90      N      N      N      Y      Y      Y  
         UBC   3.00      N      N      N      Y      Y      Y  
         UBC   3.10      N      N      N      Y      Y      Y  
 
 
 Optimal Design:        
 
Foundation diameter....:   18.00 
Foundation depth.......:    3.00 
Foundation volume......:  335.77  



265 
 

APPENDIX C  

SUPPLEMENTAL ELECTRONIC FILES 

This appendix lists electronic files used in this dissertation and provided in source format. 

MATLAB is needed to run the MATLAB files. MathCAD 15 is needed to run the MathCAD file. 

 

File Name Description 

dRBD_GBF_MV.m Gravity-base foundation source MATLAB 

d-RBD program for the medium variability 

case. 

dRBD_MV.txt Output file for the medium variability case. 

dRBD_GBF_HV.m Gravity-base foundation source MATLAB 

d-RBD program for the high variability case. 

dRBD_HV.txt Output file for the high variability case. 

Appendix A - Deterministic Computations.xmcd MathCAD file containing deterministic 

computations for the limit states considered 

in this dissertation. 
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